The use of population models to assist in American oystercatcher conservation planning.

Dan Gibson \& Thomas Riecke American Oystercatcher Working Group 12/7/2022

5
UniVERSITY OF
SASKATCHEWAN

Outline

1. Primer on integrated population models.
2. How are IPMs being used in conservation decision making.
3. IPMS and AMOY (and you!)
4. Discussion about future goals -造

Population Models 101

$$
\begin{aligned}
& N_{t+1}=N_{t} \lambda_{t} \\
& \lambda_{t}=S_{t}+R_{t}
\end{aligned}
$$

Population Models 101

$$
\begin{gathered}
N_{t+1}=N_{t} \lambda_{t} \\
\lambda_{t}=S_{t}+R_{t}+I_{t}-E_{t}
\end{gathered}
$$

$$
\begin{gathered}
N_{t+1}=N_{t} \lambda_{t} \\
\lambda_{t}=S_{t}+R_{t}+I_{t}-E_{t} \\
R_{t}=\left(B P_{t} \times N S_{t}\right) \times C S_{t} \times H Y S_{t} \\
S_{t}=S W_{t} \times S S_{t}
\end{gathered}
$$

Integrated Population Models 101

Informed by some type of population census
$N_{t+1}=N_{t} \boldsymbol{\lambda}_{\boldsymbol{t}}$
$\lambda_{t}=S_{t}+R_{t}$

Informed by Banding Data

Informed by some type of post-breeding sample

Integrated Population Models 101

Benefits?

Why are IPM being used?

1. Increased precision of parameter estimates.
2. Estimation of parameters in the absence of data. CAUTION: USE AT OWNRISK
3. Estimation of process correlation.
4. Increased capacity to determine how population structure changes over time.

Precision

1) Increased Precision of Parameter Estimates

$$
\begin{gathered}
N_{t+1}=N_{t} \lambda_{t} \\
\lambda_{t}=S A_{t}+f_{t} \times S J_{t}
\end{gathered}
$$

Missing Data

2) Estimation of parameters in the absence of data

$$
\begin{aligned}
& N_{t+1}=N_{t} \lambda_{t} \\
& \lambda_{t}=S_{t}+R_{t} \\
& \hline
\end{aligned}
$$

Breeding Population Census
$\{100,112,117,119,123,131,139,144,144,146,164\}$

Recruitment Rate
$\{0.26,0.20,0.30,0.27,0.25,0.23,0.23,0.21,0.24,0.31\}$

Adult Survival Estimates

S_{t}
$\{0.86,0.85,0.71,0.76,0.81,0.83,0.80,0.79,0.78,0.81\}$

Missing Data

2) Estimation of parameters in the absence of data

$$
\begin{aligned}
& N_{t+1}=N_{t} \lambda_{t} \\
& \lambda_{t}=S_{t}+R_{t}
\end{aligned}
$$

$\{100, \underline{X}, \ldots, \quad 123, \ldots, 139,144, \ldots, 146,164\}$
\{0.26, \qquad 0.30, \qquad 0.25, \qquad , 0.23, \qquad 0.24, \qquad
$\{0.86,0.85,0.71,0.76,0.81,0.83,0.80,0.79,0.78,0.81\}$

Missing Data

$$
\mathbf{x}=(0.86+0.26) \times 100 \quad \begin{aligned}
& \lambda_{t}=S_{t}+R_{t}
\end{aligned}
$$

$\{100$, X $, \ldots, \ldots, 123, \ldots, 139,144, \ldots, 146,164\}$
$\{0.26$, \qquad 0.30, \qquad , 0.25 , \qquad 0.23, \qquad , 0.24, \qquad
$\{0.86,0.85,0.71,0.76,0.81,0.83,0.80,0.79,0.78,0.81\}$

Missing Data

2) Estimation of parameters in the absence of data

$$
\begin{aligned}
& N_{t+1}=N_{t} \lambda_{t} \\
& \lambda_{t}=S_{t}+R_{t} \\
& \hline
\end{aligned}
$$

Breeding Population Census

$\{100,112,117,119,123,131,139,144,144,146,164\}$

Recruitment Rate
$\{0.26\{0.20,0.3,0,0,27,0.25,0.23,0.23,0.21,0,24,0\} 31\}$

Adult Survival Estimates

S_{t}
$\{0.86,0.85,0.71,0.76,0.81,0.83,0.80,0.79,0.78,0.81\}$

Missing Data

Informed by some type of population census

Estimated Informed by Banding Data

Not Collected

Missing Data

Integrated Population Models 101:

Process Correlation

Data Inconsistently Collected Across Populations

Data Inconsistently Collected Across

Populations

($\left\{\begin{array}{c}0.27,0.25,0.19,0.29,0.23 \\ 0.34,0.30,0.28,0.25,0.22\end{array}\right\}$

Integrated Population Models Facilitate Ecological Understanding and Improved Management Decisions

TODD W. ARNOLD, ${ }^{1}$ Department of Fisberies, Williffe and Conservation Biology, University of Minnesot robert g. Clark, Willife Researcb Division, Environment and Climate Change Canada, 115 Perimetel DAVID N. KOONS, ${ }^{2}$ Defartment of Wildland Resources and the Ecology Center, Utab State University, Lo, michael schaub, Swiss Ornithologial Institute, 6204 Sempach, Switrerland

Canvasback

Mark Recapture
Breeding Surveys
Nest Surveys

What are IPMs being used for?

Missing Data

Journal of Animal Ecology

Standard Paper 回 Open Access © ©
Integrated population modelling reveals a perceived source to be a cryptic sink

Mitch D. Weegman Stuart Bearhop, Anthony D. Fox, Geoff M. Hilton, Alyn J. Walsh, Jennifer L. McDonald, David J. Hodgson

Greenland white-fronted goose

Missing Data

What are IPMs being used for?

Understanding the past

ECOLOGICAL

APPLICATIONS
ECOLOCICAL SOCIETY OF AMERICA
Article
Understanding the demographic drivers of realized population growth rates

What are IPMs being used for?

Predictions into the future

Evaluating population viability and efficacy of conservation management using integrated population models

Sarah P. Saunders ${ }^{1}$ © | Francesca J. Cuthbert ${ }^{2}$ | Elise F. Zipkin ${ }^{1,3}$

What are IPMs being used for?
Community Dynamics

What are IPMs being used for?

Metapopulation Dynamics

Journal of Applied Ecology

RESEARCH ARTICLE © Open Access © (c) (i) (9)
Predicting harvest impact and establishment success when translocating highly mobile and endangered species

Johannes H. Fischer Heiko U. Wittmer, Caio F. Kenup, Kevin A. Parker, Rosalind Cole, Igor Debski,
Graeme A. Taylor, John G. Ewen, Doug P. Armstrong

(c)
c) Including return-to-source probability

Whenua Hou diving

(d)

What are IPMs being used for? Metapopulation Dynamics

Prototype:

- Resights of:

1. Confirmed breeding individuals in their natal state.
2. Non-breeding individuals in their natal state (between April-July).
3. Confirmed breeding individuals outside of their natal state.

- Only included individuals born in, or bred in, North Carolina, Georgia, Florida, Virginia, and New Jersey.

Components to Integrated Population Models: Survival

Waterbirds

Journal of the Waterbird Society
Vol. 40 Special Publication 1 \quad Pages 1-126

The American Oystercatcher (Haematopus palliatus) Working
Group: 15 Years of Collaborative Focal Species Research and
Management
Theodore R. Simons

Components to Integrated Population Models: Survival

B = Breeding Confirmed
$\mathrm{N}=$ Not confirmed to have bred
$\mathrm{F}=$ Remained in natal state
E = Emigrated from natal state
TE = Temporarily absent from natal state

What could an AMOY IPM look like?

What could an AMOY IPM look like?

What could an AMOY IPM look like?

What can we derive from this model?

- For each age-class and state:

1. Survival
2. Maturation rates
3. Availability (i.e., returned to natal state)
4. Permanent emigration (i.e., breeding in a different state)
5. Post-maturation breeding propensities

- For NC and GA:
- Per-capita chick production rates
- Population growth rates
- Breeding population size
- Spring breeding and non-breeding population sizes
- The number of individuals temporarily associated with a different state
- Immigration + slop

- Spatial variation in demographic rates is the focus for today

Probability of being available for detection in natal state: SY

Probability of being available for detection in natal state: TY

Probability of being available for detection in natal state: FY

Survival: Hatch-year

Survival: Second-Year

Survival: Third-Year

Survival: Fourth Year and Older

Probability of Maturation: Second-Year

Probability of Maturation: Fourth-Year

Overall Probability of Maturation by Sixth-Year

Model indicated spatial variation across parameters

The transition of hatched chicks into the breeding population appears to favor southern populations.

Chick production.

Evidence for meta-population dynamics

Survival and Production does not fully explain λ in NC

Future Directions

- The model is incomplete ...
- Increase the number of states/regions
- Productivity model would benefit from increased spatial and demographic resolution.
- Explicitly model region-region movements of individuals.
- The model is not currently designed to 'explain' anything

Use of IPMS in AMOY conservation planning?

Discussion

- What's needed?

- Interest
- Institutional 'buy-in' in the conceptual design of the scenario building framework.
- Capacity to, at least, maintain current levels of data collection efforts into the foreseeable future.
- Support
- Maintenance and potential expansion of the flyway demographic databases.
- Demographic modeling.

End Slide -

Dan Gibson gibsond@vt.edu

72 UnIVERSITY OF SASKATCHEWAN thomasvanceriecke@gmail.com

American
OYSTERCATCHER
WORKING GROUP

Ecology and Evolution

