#### Vegetation Succession, Avian Response, and Habitat Management Following Beneficial Placement of Dredged Material in a Coastal Marsh Area in New Jersey

#### Samantha Collins Research Scientist, The Wetlands Institute scollins@wetlandsinstitute.org















#### **NESTING HABITAT CLUSTERS**



#### Ecologic Value

- Creates network of nesting sites for beach-nesting birds at different stages of succession
- Separates populations for resiliency
- Mimics historic distribution of colonial nesting birds
- Reduces footprint of marsh disturbance

#### Dredging Value

- Provides for repetitive placement cycles
- Creates more volume utilization
- Minimizes permitting and reduces costs

## Ring Island Elevated Nesting Habitat (ENH)

2014 > 2015 > 2016 > 2017 > 2018 > 2019 > 2020 > 2020 > 2019 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 >

| Construction considerations                  | NAVD88 |
|----------------------------------------------|--------|
| Set target above MHHW                        | 2.1 ft |
| Habitat above spring tide                    | 3.6 ft |
| Habitat above storm flood elevations         | 5.5 ft |
| Allow dewatering, compaction, elevation loss | 6.0 ft |
|                                              |        |



August - created to provide nesting habitat for Black Skimmers

- 1 acre, 6000 cy dredged material
- 96% sand from NJ Intracoastal Waterway shoal
- Near legacy placement
- Open, sparsely vegetated habitat above spring high tide
- Protected from predation and disturbance



2014 2015 2016 2017 2018 2019 2020 2021

#### Ring Island NEST SITE SELECTION







 Department over Challed Assessment of Section Processing Contract Means on the LISCA, Assessment 1, 1004, and the Call Class Contractedly.

# Ring Island REPRODUCTIVE SUCCESS

<u>2</u>014

2015 > 2016 > 2017 > 2018 > 2019 >





Highest diversity of nesting species and highest number of breeding pairs in 2017 (~2.5 years after initial placement)

2020

2021

Lower productivity for nesting species by 2017



## **Ring Island Elevated Nesting Habitat (ENH)**

2014 > 2015 > 2016 > 2017 > 2018 > 2019 > 2020 > 2020 > 2019 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 > 2020 >



- Renourishment of ENH habitat March 2018
  - 1,200cy sandy dredged material, berm existing material
  - 5.5' ecological target, 6.5' construction target
  - ~3.5 years after initial placement
  - Maintain vegetation around perimeter and disturb vegetation establishing on platform of ENH
  - Highest concentration of nesting birds but lower productivity for all species compared to 2017

Small mammals established on habitat

Increased vegetation cover on habitat



- Prescribed burn of entire Ring Island habitat (February 27)
- Manual extraction (hand pulling, burr removal) immediately preceding nesting season on Ring Island (March 13 and April 4)

2014 > 2015 > 2016 > 2017 > 2018 > 2019 > 2020

Control and salt solution treatment (10% salt concentration) plots (1m<sup>2</sup>) randomly assigned along six transects
23 treatment plots, 25 control plots
\* Treatment plots received repeated salt solution spray (12x throughout season), control plots did not receive salt solution spray

Vegetation metrics measured in each plot before (April/May) and after the treatment period (July/August)

- Species ID
- Braun-Blanquet cover classes (total plot and each species)
- Length of live stems for dominant species



## **VEGETATION MANAGEMENT RESULTS**

 Application of salt spray successfully reduced vegetation growth and controlled ground cover

2014 2015 2016 2017 2018 2019 2020

- Lower species diversity for vegetation within treatment plots compared to control plots at the end of the season (Fig. 1)
- Reduced vegetation cover within treatment plots compared to control plots at the end of the season (Fig. 2)





Fig. 1. Mean number of species by phase (pre or post-treatment) and plot (control or treatment) on Ring Island.



2021

Fig. 2. Live vegetation Braun-Blanquet cover classes post-treatment by plot type on Ring Island.

+= less than 1%, 0= 0%, 1: 1% to 5%, 2: 6% to 10%, 3: 11% to 25%, 4: 26% to 50%, 5: 51% to 75%, 6: 76% to 100%



Prescribed burn of entire Ring Island habitat (January 30)

2014 > 2015 > 2016 > 2017 > 2018 > 2019 > 2020 > 2021

- No manual removal of vegetation
- Direct placement of salt on the entire Ring Island habitat on two occasions before (February) and during (April) nesting season
- Collected vegetation metrics within 1m<sup>2</sup> plots (n=20) on ENH at the end of the nesting season to allow for comparisons with 2019 control plots (no pre-season metrics)







#### **VEGETATION MANAGEMENT RESULTS**

 Cover classes observed within ENH plots in 2020 were similar to control plots in 2019(± SE)

2014 > 2015 > 2016 > 2017 > 2018 > 2019 > 2020 > 2021

- <u>5.56 ± 0.34</u> (2019 control)
- 5.60 ± 0.34 (2020)
- Average ( $\pm$  SD) species richness within all plots was 4.4  $\pm$  1.2 species slightly lower than observed in control plots on Ring ENH in 2019 (5.0  $\pm$  1.3 species)
- Combination of prescribed burn and spreading salt on Ring ENH habitat was not effective in controlling vegetation





- No prescribed burns
  - Dense vegetation established during the nesting season after burns in 2019 and 2020

2014 2015 2016 2017 2018 2019 2020

- Manual removal of vegetation within two 160m<sup>2</sup> areas prior to nesting season (March/April)
- Repeated spray (n=5) of concentrated salt solution within one of the treatment areas throughout nesting season (April-July)

Collected vegetation metrics at the start and end of the nesting season within 1m<sup>2</sup> plots

- Plots established along transects within treatment areas (n=24 per treatment area)
  - Plots randomly selected within the ENH control area (n=25)



# 2014 2015 2016 2017 2018 2019 2020 2021



### **VEGETATION MANAGEMENT RESULTS**

- Similar vegetation CC and species diversity within both treatment areas pre-season (post-manual removal, pre-salt water treatment)
  - Average veg CC (± SD) 1.3 ± 0.9 (Manual+Salt); 1.0 ± 0.2 (Manual only)
  - Average species diversity (± SD) 2.5 ± 0.7 (Manual+Salt); 1.7 ± 0.8 (Manual only)
- Manual removal alone was not effective in reducing vegetation cover but may lower species diversity
- Manual removal and salt spray treatment was very effective in limiting vegetation cover and species diversity



Imagery provided by Keith Vandersys, University of Pennsylvania

#### SALT SPRAY STUDY COMPARISONS

> 2015 > 2016 > 2017 > 2018 > 2019 > 2020

2021

- Vegetation cover similar within control areas on ENH for all years of the study
- American hog peanut (Amphicarpaea bracteata) most dominant species in control and manual removal only plots
- American beachgrass (Ammophila brevigulata) most dominant species in salt spray plots
- Salt spray plots in 2021 observed with more crabgrass (Digitaria filiformis), Seaside goldenrod (Solidago sempervirens), and American hog peanut compared to 2019
- American beachgrass similar height between saltwater and control plots in 2019; significantly lower height in saltwater + manual removal compared to manual and control plots in 2021





2015 2016 2017 2018 2019 2020

- Vegetation cover similar within control areas on ENH for all years of the study (>50%)
- Average number of species similar within control areas on ENH for all years of the study (4-5 species)
- Salt spray plots with significantly lower CC and species diversity both years of the treatment study
- Manual removal only with similar CC to control plots but lower species diversity

2014



#### SUMMARY **AVIAN RESPONSE TO HABITAT MGMT**

- Lower number of Black Skimmer breeding pairs after habitat renourishment
- Highest nesting concentrations of Common Terns following renourishment, few nesting in 2020 and 202

2014 > 2015 > 2016 > 2017 > 2018 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 > 2019 >

No productivity in 2019 and 2021 (high activity for mammalian and avian predators)

Increased mammalian and avian predators detected on habitat











2020



## **VEGETATION SUMMARY**

- Succession of vegetation on ENH limited nesting for focal species
- Differences in vegetation communities and species CC between years may be a result of differences in succession or individual species' response to management efforts
- Salt solution spray was effective in reducing vegetation on ENH but application to entire habitat was not feasible
- Controlled burns initially removed vegetation from habitat but may have promoted growth for certain vegetation species
- Avian response to vegetation succession indicates the need for increased efforts to control vegetation at the site to promote and sustain suitable nesting habitat for target species.







#### **ELEVATED NESTING HABITAT CONSIDERATIONS**

- Important to understand benchmark elevations of ecological targets to provide suitable habitat for species
- Understand management needs for target species (elevation, sediment, vegetation, predators)
  - Plan for vegetation management or repetitive habitat renourishment, depending on target species and habitat requirements
- Monitoring plan is needed to understand changes to habitat and species responses
  - Species response to created/restored habitat and vegetation succession may be different at each site

## ACKNOWLEDGEMENTS



- Lisa Ferguson Brittany Morey Lenore Tedesco Chris Dolan Allison Anholt
- Funding sources:
  - NFWF Hurricane Sandy Coastal Resiliency Grant
  - NJ DEP

TWI staff:

- USACE
- Seven Mile Island Innovation Laboratory: Wetlandsinstitute.org/SMIIL ewn.el.erdc.dren.mil/
- All the other staff, interns, and volunteers that helped contribute to these efforts

#### THANK YOU!