Competing Risks and Nest Success of American Oystercatchers and Wilson's Plovers on the Georgia Coast

American Oystercatcher Working Group Meeting 2014

Abby Sterling (avsterl@uga.edu), Joanna Hatt, Tim Keyes, Robert Cooper

> ¹University of Georgia, Athens, GA USA ²GA Dept. of Natural Resources

Background: American Oystercatchers

121 nesting pairs in GA (2014) Rare (SWAP, 2005)

Results

Background

Study Sites

Objectives

Hypotheses

Methods

Background: Wilson's Plovers

Background

Study Sites

Objectives

Hypotheses

Methods

Results Conclusions

Objectives

- Quantify nest site characteristics
- Estimate nest success and fledging success
- Determine nest site characteristics that predict productivity
- Identify common features between both species
- Develop predictive models to guide management

Objectives

Hypotheses

Methods

Results

Methods

- Locate and monitor nests during 2012 and 2013 breeding season
 - Visual survey, tracking, parental behavior
 - Assess cause of failure by track identification

Methods

Band and monitor chicks until fledging

Objectives

Hypotheses

Methods

Results Cor

Study Sites

Objectives

Hypotheses

Background

Methods

 Measure nest-site characteristics at nests and random sites

Results

Methods

Methods

Scale and Measurements:

- 1. Microhabitat (1 meter quadrat)
 - Percent cover of vegetation, open sand, wrack and shell, elevation
 - Presence of predator
- 2. Macrohabitat (25 meter line transects)
 - Characterization of vegetation
 - Presence of predators
- 3. Landscape Scale
 - Distances to marsh edge, mud flats, tideline

So far...

	Microh	abitat	Landsca	ape
	Location	Success	Location	Success
AMOY	wrack(+), open sand (-) vegetation (+), wrack (+), open sand (-)	other scales? Covariates? elevation (+), open(-)	mixed landcover (+), elevation (+), topography (-)	mixed landcover (+)
Background	Study Sites Objective	es Hypotheses	Methods Results	Conclusions

Notes about competing risk models

- "correctly adjusts the probabilities of failure due to one cause conditional on failure due to another cause not occurring." (Etterson et al. 2007)
- Uses Markov chain likelihood estimator which allows for temporal heterogeneity
- Used in a variety of systems and widely with nesting birds
- Etterson developed Mcestimate ~2012, as working model for research

Using Competing Risks Models

- Used MC Estimate to build and compare models with biologically relevant hypotheses:
 - Factors impacting overwash risk: Elevation, Date
 - Factors impacting predation: Cover of vegetation, Substrate, and Openness

Nest location in vegetation

Date

Age

- Year was used in all models
- Excluded correlated variables and nests with no known assigned fate
- Ran models for each site and species separately
- Compared models with AIC and examined parameter estimates for top models (no model averaging)

LSSI Wilson's Plover

	Model name		N	LL	A	lCc	delta	a AICc	Weight	K
1	overwashed(year+elev+Date)predated(.)		294.25		598.52		0		0.36	5
2	overwashed(elev+Date+year)predated(year+in_veg)		292.74		599.53		1.01		0.22	7
3	overwashed(elev+Date+year)predated(year)		294.18		600.39		1.87		0.14	6
4	overwashed(elev+Date+year)predated(year+in_veg+sand_cov)		292.37		600.81	:	2.29		0.12	8
5	overwashed(year+elev)predated(.)		297.07		602.16	:	3.64		0.06	4
6	Top Models	npa	ar /	AIC c		delta		weig	t	9
7	Overwash(Year+Elevation+Date) Predation(.)	•	5	<u> </u>	52		0		0.36	10
8	Overwash(Year+Elevation+Date) Predation(Year+Nest In Veg)		7	599.	53		1.01		0.22	11
9	Overwash(Year+Elevation+Date) Predation(Year)		6	600	39		1.87		0.14	11
10		,		000.			1.07			11
11	overwashed(elev)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date+Age)		297.32		614.74		16.22		0	10
12	overwashed(year)predated(.)		305.75		617.52		19		0	3
13	overwashed(.)predated(.)		308.41		620.82	:	22.3		0	2
14	overwashed(.)predated(year+in_veg)		306.91		621.84		23.32		0	4
15	overwashed(.)predated(year)		308.41		622.83	:	24.31		0	3
16	overwashed(.)predated(year+in_veg+sand_cov)		306.55		623.12	:	24.6		0	5
17	overwashed(.)predated(year+in_veg+sand_cov+shell_cov)		306.55		625.13	:	26.61		0	6
18	overwashed(.)predated(year+in_veg+sand_cov+shell_cov+wrack_cov)		305.83		625.71	:	27.19		0	7
19	overwashed(.)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date)		305.56		627.19	:	28.67		0	8
20	overwashed(.)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date+Age)		305.26		628.6	:	30.08		0	9
1	Background Study Sites Objectives Hypotheses	М	lethods	R	sults	Cor	clusio	ns		-

Model: Overwash(Year+Elevation+Date) Predation(Year+Nest In Veg)

Conclusions

Parameter Estimates for Model for LSSI WIPL

Fate	Parameter	Estimate	SE			96140	-
Overwashed	Intercept	5.1294	2.1632	2		The Las	- SHICE
Overwashed	Elevation	-3.4183	0.7252	1		- Ush	2
Overwashed	Date	-0.0236	0.0108	3			
Overwashed	Year: 2013	-1.0316	0.4448	3			-
Predated	Intercept	-3.3912	0.2929	Ð			
Predated	Year: 2013	0.1133	0.2897	7			
Predated	Nest in Veg: Yes	-0.05021	0.2869)		and the second	
	Daily I	Estimates		N	est Perio	d Estimate	
	Estimate	Standard	Error	Estir	nate	Standard	Error
Success	0.9574	0.0095		0.3578		0.0877	
Overwashed	0.0104	0.0036		0.1321		0.0510	
Predated	0.0322	0.0091		0.5101		0.1000	
Back	ground Study Sites	Objectives	Нур	otheses	Methods	Results	Conc

Plot of elevation parameter for LSSI WIPL

*Daily survival probabilities are fitted using 101 values of this quantitative variable between the maximum and minimum

Background Study Sites

Sites Ob

Objectives

Hypotheses N

Methods Results

CUIS Wilson's Plover

	Model name	N	LL A	ICc delta	AICc Weight	t K
1	overwashed(year+elev)predated(.)	263.51	535.05	0	0.42	4
2	overwashed(year+elev+Date)predated(.)	262.77	535.58	0.52	0.32	5
3	overwashed(elev+Date+year)predated(year)	262.57	537.19	2.14	0.14	6
4	overwashed(elev+Date+year)predated(year+in_veg)	262.36	538.8	3.74	0.06	7
5	ove Top Models n	par	AIC_c	delta	weight	8
6	ove Overwash(Year+Elevation) Predation(.)	4	535.05	0	0.42	9
7	Overwash(Year+Elevation+Date) Predation(.)	5	535.58	0.52	0.32	10
8	overwasned(elev+Date+year)predated(year+in_veg+sand_cov+snell_cov+wrack_cov+Date	261.56	545.31	10.25	0	11
9	overwashed(elev+Date+year)predated(year+sand_cov+shell_cov+wrack_cov+Date+Age)	261.85	545.87	10.82	0	11
10	overwashed(year+elev)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date+Age) 262.21	546.6	11.54	0	11
11	overwashed(elev)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date+Age)	272.54	565.23	30.18	0	10
12	overwashed(year)predated(.)	281.08	568.17	33.11	0	3
13	overwashed(.)predated(.)	293.32	590.64	55.59	0	2
14	overwashed(.)predated(year)	293.2	592.41	57.36	0	3
15	overwashed(.)predated(year+in_veg)	292.99	594.01	58.96	0	4
1 6	overwashed(.)predated(year+in_veg+sand_cov)	292.9	595.84	60.78	0	5
17	overwashed(.)predated(year+in_veg+sand_cov+shell_cov)	292.44	596.94	61.89	0	6
18	overwashed(.)predated(year+in_veg+sand_cov+shell_cov+wrack_cov)	292.29	598.65	63.59	0	7
19	overwashed(.)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date)	292.2	600.49	65.44	0	8
20	overwashed(.)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date+Age)	292.08	602.28	67.23	0	9
1	Background Study Sites Objectives Hypotheses	Method	s Results	Conclusio	ns	

Model: Overwash(Year+Elevation) Predation(.)

Parameter Estimates for Model for CUIS WIPL

Fate	Parameter	Estimate	SE
Overwashed	Intercept	-0.2361	2.0973
Overwashed	Elevation	-1.4976	1.0290
Overwashed	Year: 2013	-1.6709	0.5077
Predated	Intercept	-3.3489	0.1411

		Daily Estimates		Nest Peri	od Estimate
		Estimate	Standard Error	Estimate	Standard Error
	Success	0.9375	0.0133	0.1989	0.0707
	Overwashed	0.0296	0.0131	0.3794	0.1236
100	Predated	0.0329	0.0045	0.4217	0.0687

Background S

Study Sites

Objectives H

Hypotheses

Methods

Results

LSSI American Oystercatcher

	Model name	NLL	AICc	delta Al	Cc We	ight	К
1	overwashed(elev+Date+year)predated(year+sand_cov+shell_cov+wrack_cov+Date+Age)	56.68	135.85	0	0.35		11
2	overwashed(year+elev)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date+Age)	56.74	135.97	0.12	0.33	4	11
3	overwashed(elev)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date+Age)	59.46	139.33	3.48	0.06	1	10
4	overwashed(year+elev)predated(.)	65.85	139.78	3.93	0.05	4	4
	Top Models		npar	AIC_c	delta w	/eight	9
6	Overwash(Year+Elevation+Date) Predation(Year+Openness+ Shell+W	/rack+Date+	- Age) 11	1 135.85	0	0.35	6
C	<pre>Dverwash(Year+Elevation) Predation(Year+Openness+ Shell+Wrack+Date+</pre>	Age+NestIr	ו Veg) 1	1 135.97	0.12	0.33	5
8	overwashed(.)predated(year+in_veg+sand_cov+sheil_cov+wrack_cov+bate+Age)	01.41	141.10	5.51	0.02	ų	9
9	overwashed(elev+Date+year)predated(year+in_veg)	63.52	141.25	5.4	0.02	7	7
10	overwashed(elev+Date+year)predated(year+in_veg+sand_cov+shell_cov+wrack_cov)	60.93	142.27	6.42	0.01	1	10
11	overwashed(elev+Date+year)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date)	60.02	142.54	6.69	0.01	1	11
12	overwashed(elev+Date+year)predated(year+in_veg+sand_cov)	63.5	143.26	7.41	0.01	8	8
13	overwashed(year)predated(.)	68.77	143.59	7.74	0.01	4 1	3
14	overwashed(.)predated(year+in_veg+sand_cov+shell_cov)	66.03	144.22	8.37	0.01	(6
15	overwashed(.)predated(year)	69.16	144.36	8.51	0		3
16	overwashed(.)predated(year+in_veg)	68.54	145.16	9.31	0	4	4
17	overwashed(.)predated(.)	70.57	145.17	9.32	0	1	2
18	overwashed(.)predated(year+in_veg+sand_cov+shell_cov+wrack_cov)	65.95	146.11	10.26	0	7	7
19	overwashed(.)predated(year+in_veg+sand_cov+shell_cov+wrack_cov+Date)	65.07	146.4	10.55	0	8	8
20	overwashed(.)predated(year+in_veg+sand_cov)	68.52	147.15	11.3	0	Ę	5

Objectives

Hypotheses Methods

Results

Model: Overwash(Year+Elevation) Predation(Year+NestInVeg+ Openness+ Shell Cover+Wrack Cover+Date+Age)

Parameter Estimates for Model for LSSI AMOY

Fate	Parameter	Estimate	SE
Overwashed	Intercept	2.4513	1.9164
Overwashed	Elevation	-3.6445	1.0773
Overwashed	Year: 2013	-2.1154	0.9578
Predated	Intercept	-9.3689	3.1847
Predated	Year: 2013	3.0378	1.0519
Predated	Nest in Veg: Yes	-1.0928	1.0542
Predated	Openness	5.07 e-04	0.0145
Predated	Shell Cover	0.2479	0.0833
Predated	Wrack Cover	-0.0062	0.0206
Predated	Date	0.0076	0.0152
Predated	Age	0.1198	0.0432

	Daily Es	stimates	Nest I Estir	Period mate
	Estimate	Standard Error	Estimate	Standard Error
Success	0.9839	0.206	0.5440	0.3763
Overwashed	0.0147	0.0205	0.4075	0.4040
Predated	0.0014	0.0015	0.0485	0.0552

Results

Background Study Sites

Objectives

Hypotheses

Methods

CUIS American Oystercatcher

	Model name	NLL	AICc	delta AICc	Weight	K
1	fail(year+in_veg+sand_cov+wrack_cov+elev+Date+Age)	6.48	31.22	0	0.85	8
2	fail(year)	16.07	36.31	5.1	0.07	2
3	fail(year+in_veg)	16.03	38.41	7.19	0.02	3
4	fa Top Model			npar AIC	_c delta we	ight
5	Failed (Year + Nest in Veg+ Openness+ Wrack Cov	ver+ Elevation+	+ Date+ Age)	11 135	.85 0 0.	35
6	fail(year+in_veg+sand_cov+wrack_cov)	14.82	40.54	9.32	0.01	5
7	fail(wrack_cov)	18.47	41.1	9.88	0.01	2
8	fail(Date)	18.7	41.58	10.36	0	2
9	fail(elev)	18.7	41.58	10.36	0	2
10	fail(sand_cov)	18.82	41.8	10.59	0	2
11	fail(Age)	18.87	41.91	10.7	0	2
12	fail(in_veg)	18.88	41.92	10.71	0	2
13	fail(year+in_veg+sand_cov+wrack_cov+elev)	14.62	42.5	11.29	0	6
14	fail(sand_cov+wrack_cov)	18.46	43.27	12.05	0	3
15	fail(year+in_veg+sand_cov+wrack_cov+elev+Date)	14.59	44.9	13.68	0	7
16	fail(sand_cov+wrack_cov+elev)	18.44	45.48	14.26	0	4
	Background Study Sites Objectives Hy	vpotheses M	lethods Resul	ts Conclusio	ons	

Model: Fail(Year+Nest In Veg+Open+Wrack Cover+ Elevation+ Date+ Age)

Model name-

fail(year+in_veg+sand_cov+wrack_cov+elev+Date+Age)

	Fate	Parameter	Estimate	SE	min	max	fit
L	fail	Intercept	18.9553	9.8363	1	1	1
2	fail	year:2013	-6.7983	2.7605	0	1	0
}	fail	in_veg:Y	16.1020	8.2218	0	1	0
Ļ	fail	sand_cov	0.0597	0.0716	0	100	53.4737
5	fail	wrack_cov	0.2179	0.0950	0	40	16.5263
5	fail	elev	-4.2147	2.5940	1.5590	3.4620	2.4675
	fail	Date	-0.1584	0.0655	97	174	140.8526
3	fail	Age	0.5848	0.2178	0	25	9.7684
es	z-value for (confidence interv	vals: 1.96		decimal precision:	4	
es	z-value for o	MLE	vals: 1.96	L_CL	decimal precision:	4	
es	z-value for o	MLE	vals: 1.96	L_CL 0.0133	decimal precision: U_CL 0.9989	4	
es 1 2	z-value for o Parameter success fail	MLE 0.7777 0.2223	Vals: 1.96 SE 0.4901 0.4901	L_CL 0.0133 0.0011	U_CL 0.9989 0.9867	4	
es 1 2 all	z-value for o Parameter success fail estimates:	MLE 0.7777 0.2223	Vals: 1.96 SE 0.4901 0.4901	L_CL 0.0133 0.0011	decimal precision: U_CL 0.9989 0.9867	4	
es 1 2 all	z-value for of Parameter success fail estimates:	MLE 0.7777 0.2223 days. e	vals: 1.96 SE 0.4901 0.4901 0.4901	L_CL 0.0133 0.0011 days.	decimal precision: U_CL 0.9989 0.9867 decimal precision:	4	
es 1 all ta	stimates: z-value for o Parameter success fail estimates: rt: 1	days. e	vals: 1.96 SE 0.4901 0.4901 nd: 28 e SE	L_CL 0.0133 0.0011 days.	decimal precision: U_CL 0.9989 0.9867 decimal precision:	4	
es 1 all	stimates: z-value for o Parameter success fail estimates: rt: 1	days. e 0.9983	vals: 1.96 SE 0.4901 0.4901 nd: 28 e SE 0.0065	L_CL 0.0133 0.0011 days.	decimal precision: U_CL 0.9989 0.9867 decimal precision:	4	

Model Failed to Converge:

Parameter estimates unrealistic; N=20 with:

- 1 Nest overwashed
- 9 Nests predated
- 10 Nests failed due to unknown cause

Likely when many nests share the same fate, and there are many parameters in the model

Results Conclusions

Summary

 Competing risk models can help us see the interaction between multiple threats

	LS	SI	CL	lis		
	Predation	Overwash	Predation	Overwash		
	Year (2013 +)*					
	Nest in Veg (Y -)*	Year (2013 -)*	Madal failed	to convorgo		
AIVIUT	Shell Cover (+)	Elevation (-)*	woder falled	to converge		
	Age (+)					
	Year (2013 +)*	Year (2013 -)*	No variables in	Year (2013 -)*		
WIPL	Nest in Veg (Y -)	Elevation (-)*	top models	Elevation (-)*		

Not very surprising but this does reflect the logistic exposure results (elevation)

Background

Study Sites

Objectives

Hypotheses

Methods

Conclusions

Results

Other considerations:

- Density
- Predator type (avian vs mammalian, coyote vs raccoon)
- Scale (Macro, Landscape)
- Compare these results to used versus unused nest sites

Next Steps

- Investigate macro & landscape characteristics
 - Community mapping?
 - Investigate how sea level rise, shoreline change and inlet dynamics might impact nesting habitat
- Create fledgling survival estimates and determine correlation to nest site
- Compare nest site features between species
- Agent-based model to look at effect of predation
- Create maps and recommendations to help guide managers to focus efforts on highly productive habitat

Acknowledgements

Photo: Brad Winn

Questions?

