# Repeated count surveys help standardize multi-agency estimates of American Oystercatcher abundance



A collaborative study

October 2014

### **Co-authors and Collaborators**

- Nathan J. Hostetter, Beth Gardner, Ken Pollock, Tracy Borneman, Ted Simons (NCSU)
- Sara Schweitzer, Matt Abraham (NCWRC)
- Ruth Boettcher (VDGIF)
- Alex Wilke (TNC-VA)
- Lindsay Addison, Walker Golder (NC Audubon)
- Randy Swilling, Britta Muiznieks (Cape Hatteras NS)
- Jon Altman, Michael Rikard (Cape Lookout NS)



# Assessing AMOY Abundance

- Numerous threats to local and regional populations
- "Management Concern" USFSW
   "High Concern" US Shorebird
   Conservation plan





# Assessing AMOY Abundance

#### Data challenges:

- Multiple agencies
- Metric of interest
- Detection probability



# **Objectives**

 Develop a standardized multi-partner survey to estimate AMOY breeding season abundance that accounts for imperfect detection



2. Validate use of approximate count metrics that do not require nest searching

#### Methods – Field Surveys

• 8 agencies surveyed 96 plots in North Carolina (n = 93) and Virginia (n = 3)



#### Methods – Field Surveys

- 8 agencies surveyed 96 plots in North Carolina (n = 93) and Virginia (n = 3)
- Counted AMOY "pairs" and "territories"



#### Methods – Field Surveys

- 8 agencies surveyed 96 plots in North Carolina (n = 90) and Virginia (n = 3)
- Counted AMOY "pairs" and "territories"
- Surveys were repeated on multiple occasions to allow estimation of detection probability
  - May-July, 2013
  - -219 total surveys (~2.3 surveys per plot)

# Methods - Analysis

- N-mixture models (Royle 2004; Lyons et al. 2012)
- Covariates on ABUNDANCE:
   Plot area
   State (NC vs VA)
- Covariates on DETECTION :
  - Day-of-year (quadratic)
  - Tide stage



- Plot location (barrier island vs. coastal bay)

### Methods – Validation of Counts

- Intensive nest searching at 13 plots to determine number of breeding pairs (2 - 5 visits per <u>week</u>)
- Compare to estimated:
  - "Pairs"
  - "Territories"
  - (1 6 visits per <u>season</u>)



#### **Results – Abundance**



#### **Results – Detection**



#### **Results – Detection**



#### **Results – Validation**



# Conclusions

- Collaboration expanded spatial coverage

   required additional pre-season planning
- Detection probability <1.0
   <ul>
   Highest during middle of season
- Standardize count metrics



# Discussion

- Standardized repeated count surveys provide a method to address state- and range-side AMOY monitoring objectives
- Random sampling will be required to extrapolate results to the larger AMOY population



# Acknowledgments

Numerous field technicians and volunteers from:

- Audubon North Carolina
- North Carolina Wildlife Resources Commission
- North Carolina State University
- The Nature Conservancy of Virginia—Virginia Coast Reserve
- Virginia Department of Game and Inland Fisheries
- National Park Service Cape Hatteras National Seashore and Cape Lookout National Seashore

#### **Extra slides: Statistical Model**

#### ABUNDANCE

 $N_{i} \sim Poisson(\lambda_{i})$   $\log(\lambda_{i}) = \alpha_{0} + \alpha_{1}S_{i} + \alpha_{2}Log(A_{i}) + \varepsilon_{i}$  $\varepsilon_{i} \sim Normal(0, \sigma_{\lambda}^{2})$ 

#### DETECTION

 $y_{i,j} \sim Binomial(N_i, p_{i,j})$  $logit(p_{i,j}) = \beta_0 + \beta_1 T R_{i,j} + \beta_2 T F_{i,j} + \beta_3 T L_{i,j} + \beta_4 D O Y_{i,j} + \beta_5 D O Y_{i,j}^2 + \beta_6 P L_i + \delta_{i,j}$  $\delta_{i,j} \sim Normal(0, \sigma_p^2)$ 

- Analyzed in a Bayesian framework using JAGS and R
- 1,000 adaptation; 20,000 burn-in; and 80,000 posterior iterations

### Extra slides: Parameter Estimates

|                                                   | Territories |                      | Pairs |                |
|---------------------------------------------------|-------------|----------------------|-------|----------------|
|                                                   | Mean        | 95% BCI              | Mean  | 95% BCI        |
| ABUNDANCE (log scale)                             |             |                      |       |                |
| $\alpha_0$ (North Carolina, mean log area)        | 0.23        | (-0.26, 0.68)        | 0.51  | (0.08, 0.91)   |
| log(area)                                         | 0.40        | (0.05 <i>,</i> 0.75) | 0.42  | (0.11, 0.74)   |
| State - Virginia                                  | 3.20        | (1.75, 4.82)         | 3.40  | (2.07, 4.77)   |
| $\sigma_{\lambda}$                                | 1.17        | (0.82, 1.61)         | 1.07  | (0.77, 1.43)   |
|                                                   |             |                      |       |                |
| DETECTION (logit scale)                           |             |                      |       |                |
| $\beta_0$ (high tide, barrier island, mid-season) | 1.72        | (0.35 <i>,</i> 3.21) | 1.50  | (0.21, 2.88)   |
| doy                                               | 0.08        | (-0.28, 0.44)        | -0.09 | (-0.47, 0.25)  |
| doy <sup>2</sup>                                  | -0.55       | (-0.90, -0.26)       | -0.46 | (-0.77, -0.19) |
| Location - coastal bay plot                       | 0.41        | (-0.47, 1.29)        | 0.76  | (-0.09, 1.63)  |
| Tide - rising                                     | -1.61       | (-2.92, -0.50)       | -1.88 | (-3.16, -0.78) |
| Tide - falling                                    | -1.21       | (-2.45, -0.18)       | -1.15 | (-2.34, -0.09) |
| Tide - low                                        | -1.12       | (-2.35, -0.04)       | -0.85 | (-2.02, 0.26)  |
| $\sigma_p$                                        | 1.04        | (0.44, 1.72)         | 1.06  | (0.48, 1.66)   |