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INTRODUCTION

American Oystercatchers Haematopus palliatus face signifi-
cant threats throughout their range including habitat loss, hab-
itat degradation, potential prey resource depletion, increasing 
threats from predators and human disturbance (Brown et 
al. 2005). Historically, the preferred breeding habitat for 
American Oystercatchers on the east coast of North America 
was barrier beach habitat. However, barrier beaches in many 
parts of the species’ range, including in New Jersey, have 
been severely degraded by extensive coastal development, 
beach stabilization practices and high levels of recreational 
disturbance. New Jersey is the most densely populated state 
in the United States, and the population in coastal counties 
swells during the summer months. The state’s beaches are in 
close proximity to major metropolitan areas including New 
York City, which is the third most populated coastal city in the 
world (Martinez et al. 2007). Thus, there is an intensification 
of recreational activity that coincides with the peak breeding 
season for many beach-nesting birds, including the American 
Oystercatcher. At present, we do not have a clear understand-
ing of the effects of high levels of human disturbance on 
oystercatcher distribution in urbanized coastal ecosystems 
such as those found in New Jersey. Here, I used novel species 
distribution modeling techniques to show that oystercatcher 
distribution is influenced by human disturbance. 

Human disturbance on breeding grounds can affect the 
reproductive success of birds in a variety of ways during dif-
ferent phases of the reproductive cycle including alteration 
of nest-site selection, abandonment of nesting territories, 
disruption of incubation, increased predation, thermal stress 
on eggs and chicks, disruption of foraging and increased 
energy expenditures by adults and fledglings (Burger 1991, 
Carney & Sydeman 1999, Erwin 1980, Flemming et al. 1988, 
Gill et al. 1996, Major 1990, Safina & Burger 1983, Van 
der Zande & Vestral 1985, Yalden & Yalden 1990). Human 
disturbance has been linked to a reduction in reproductive 
success in several oystercatcher species including the African 
Black Oystercatcher H. moquini (Leseberg et al. 2000), the 
European Oystercatcher H. ostralegus (Verhulst et al. 2001) 
and the American Oystercatcher (McGowan & Simons 2006), 
and may have contributed to the extinction of the Canarian 
Black Oystercatcher H. meadewaldoi (Hockey 1987).

Human development and persistent human disturbance on 
or near breeding grounds early in the breeding season could 
affect settlement and territory establishment of birds, causing 
birds to abandon optimal habitat and subsequently settle in 
sub-optimal habitat (Erwin 1980, Van der Zande & Vestral 
1985, Yalden & Yalden 1990). Shorebirds may be particularly 
vulnerable to the effects of disturbance on breeding grounds 
(Cardoni et al. 2008), with the consequence often being that 
individuals are displaced from the best habitat (Lafferty et al. 
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2006, Schulz & Stock 1993). High levels of human distur-
bance on beaches cause oystercatchers and other shorebirds 
to breed in greater numbers in alternative habitats (Colwell 
et al. 2005, McGowan et al. 2005, Toland 1999). Thus, the 
high level of recreational disturbance on New Jersey’s barrier 
beaches may explain the high proportion of American Oys-
tercatchers breeding in alternative habitats (Virzi et al. 2008). 

Explaining the distributional variation in response to 
 human disturbance pressure is difficult; however, there are 
many recently developed species distribution modeling 
techniques that perform well for such analyses. Ecological 
data are often complex and unbalanced, often violating the 
assumptions necessary to use parametric statistics to describe 
relationships without transforming data (De’Ath & Fabricius 
2000). Species distribution modeling techniques use non-
parametric tests to examine complex relationships between 
occurrences and environmental variables. One such technique 
that has seen recent use in ecological applications is clas-
sification and regression tree (CART) modeling (Breiman et 
al. 1998). CART models have been used for a wide range of 
applications such as explaining the response of environmental 
variables on species distributions, predicting the location of 
new populations, identifying variables contributing to the 
establishment of invasive species and examining the effects 
of urbanization on distributions (Bourg et al. 2005, Palomino 
& Carrascal 2007, Usio et al. 2006, Zigler et al. 2008). I 
used CART models to identify the most important variables 
explaining the distribution of American Oystercatchers in 
response to recreational activity.

A number of other species distributional modeling tech-
niques have been used in recent decades including gener-
alized additive models (Guisan et al. 2002), multivariate 
adaptive regression splines (Munoz & Felicisimo 2004), 
boosted regression trees (De’Ath 2007), random forests 
(Cutler et al. 2007) and maximum entropy models (Phillips 
et al. 2006). These complex modeling techniques are often 
used to predict the fundamental niche of a species at broad 
scales (e.g. continental scale) using environmental variables 
such as temperature, precipitation or elevation (Phillips et al. 
2006). These models may also be used to predict the realized 
niche at a smaller scale by including finer-scale predictor 
variables (Karl et al. 2000). The actual distribution of a spe-
cies, however, will often be different than the realized niche 
at local scales (Pulliam 2000). At the local scale, factors such 
as inter-specific competition and human disturbance play 
important roles in affecting species distributions (Thuiller 
et al. 2004). To date, few species distribution models have 
incorporated human disturbance layers as explanatory vari-
ables, although recent studies show that species distributions 
are indeed affected by such variables (Agness et al. 2008, 
Lippitt et al. 2008).

Here, I develop and compare simple CART models with 
other more complex species distribution modeling techniques. 
Virzi et al. (2008) modeled the realized niche of the American 
Oystercatcher in New Jersey based on environmental vari-
ables and the extent of urbanization. The species distribution 
model performed well at a regional scale; however, the model 
had poor predictive power at a local scale when validated 
with an independent dataset based on ground surveys. The 
actual distribution showed that a high proportion of oyster-
catchers (69%) nested in sink habitat, and Virzi et al. (2008) 
hypothesized that this was partially due to the severely limited 
amount of highly suitable breeding habitat that remains in 
New Jersey. However, there is still available habitat on the 

state’s barrier beaches predicted to be highly suitable that is 
not being used by oystercatchers. For a species going through 
a range expansion such as the American Oystercatcher (Davis 
et al. 2001), highly suitable habitat that is unsaturated should 
be filled first before any shift into alternative habitat (Fielding 
& Bell 1997). I hypothesize that oystercatchers in New Jersey 
are being displaced from the remaining highly suitable habitat 
on barrier beaches due to high levels of human disturbance. 

The main goals of my study were to: (1) determine if 
 human disturbance affects oystercatcher distribution, (2) 
analyze the effects of various types and levels of human 
disturbances on the local distribution, and (3) compare the 
performance of CART models to other more complex species 
distribution modeling techniques.

METHODS

Training data

I used presence and absence records as training data for my 
species distribution models. These data were provided by 
ground surveys conducted during 2007 along all Atlantic 
Ocean-facing beaches in New Jersey (see Virzi et al. 2008 for 
methods). The surveys identified 68 occurrence records (i.e. 
breeding pairs) that I used as presence data in my models. I 
also included 68 absence records in my models; absence was 
confirmed during the surveys based on visits to randomly 
selected points within the study areas. For all occurrence 
records the total number of breeding pairs located within a 
100 m radius was provided, and this was used for analysis of 
abundance in my regression tree models.

Explanatory variables

My distribution modeling techniques required the creation of 
a set of explanatory variables that were used as background 
data over which the distribution of presence and absence 
records were modeled (Table 1). Virzi et al. (2008) identified 
a suite of regional-scale environmental variables that were 
used to model habitat suitability for oystercatchers using a 
maximum entropy modeling approach. The resulting model 
provided a map of habitat suitability values (or probability 
distribution) for all pixels in the study area. I extracted these 
values to the training data points using Hawth’s Analysis 
Tools (version 3.26) for ArcGIS 9.2 (ESRI, Inc., Redlands, 
CA, USA). Thus, the first explanatory variable in my species 
distribution models was the habitat suitability index provided 
by Virzi et al. (2008), which excluded additional explanatory 
variables for human disturbance. 

The remaining explanatory variables examined the  effects 
of human disturbance on oystercatcher distribution. Follow-
ing the recommendations of Burnham & Anderson (2002), 
I selected an a priori set of explanatory variables that I 
hypothesized would influence oystercatcher distribution at 
a local scale. Thus, I chose six additional explanatory vari-
ables related to recreational disturbance on barrier beaches 
(Table 1). I kept the number of explanatory variables low 
because using excess variables with small training datasets 
is known to cause over-fitting of models (Gibson et al. 2007, 
Rushton et al. 2004). 

I formulated the following hypotheses about the effects of 
the selected explanatory variables on the local distribution of 
oystercatchers on New Jersey barrier beaches:
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1. Oystercatchers were expected be more abundant in areas 
with high habitat suitability values. 

2. Oystercatchers were expected to be less abundant in 
highly suitable areas when the level of human disturbance 
was high.

3. Driving on beaches during the breeding season should 
displace oystercatchers from suitable habitat.

4. I expected temporal variation in the effects of driving on 
oystercatcher distribution, with the most severe effects 
occurring during the peak nest initiation period (late-April 
through May).

Modeling techniques

I used several modeling techniques to test the efficacy of 
CART models compared to more complex distributional 
modeling techniques. One of the main advantages of CART 
modeling is the ease of interpretation of the results (De’Ath 
& Fabricius 2000). The main purpose of my analyses was to 
determine the most important explanatory variables  affecting 
oystercatcher distribution in response to recreational distur-
bance. Each of the modeling techniques provided an estimate 
of variable contributions, and these were compared between 
models. The benefit of using several different modeling tech-
niques is that models may be evaluated against each other, 
lending support to interpretations of any single model. 

First, I used CART models to examine the effect of human 
disturbance on oystercatcher distribution. Although easy to 
use, CART models perform well compared to other more 
advanced modeling techniques (Munoz & Felicisimo 2004, 
O’Brien et al. 2005, Turgeon & Rodriquez 2005). CART 
models explain the variation of a single response variable by 
repeatedly splitting the data into more homogeneous groups 
based on multiple explanatory variables (De’Ath & Fabricius 
2000). The response variable in classification tree analysis is 
presence or absence of the species, while the response vari-
able in regression tree analysis is species abundance. In both 
analyses, the first step is to grow an overlarge tree by splitting 
the tree into many branches using a simple decision rule that 
partitions the data into two mutually exclusive groups at each 

node (split) of the tree. The decision rule for classification 
trees is to select the split that minimizes the misclassifica-
tion rate at each node. For regression trees, splits minimize 
the sum of squares about the group mean at each node. The 
overlarge tree is then pruned back based on a v-fold cross-
validation process. The best tree is determined using the 1-SE 
rule, or the most parsimonious tree that is within 1-SE of the 
tree with the minimum error (Breiman et al. 1998). 

I used CART software version 6.0 (Salford Systems, San 
Diego, CA, USA) for all CART analyses. In all models, I used 
the Gini index for measuring the homogeneity of nodes, a 
10-fold cross-validation process, and allowed surrogate val-
ues for missing explanatory variables. I determined the final 
tree size in each analysis by examining a series of 50 cross-
validations so that I could assess the variation in the size of 
the best tree selected in each run, ensuring that the size of the 
selected trees were not atypical (De’Ath & Fabricius 2000). 

Second, I modeled the species distribution with a classi-
fication technique that is well established in other fields but 
is rarely used in ecology, random forests modeling (Cutler 
et al. 2007). This technique is based on classification trees; 
however, rather than building a single best tree this technique 
constructs a series of trees and combines the predictions to 
explain the distribution. Recent studies show that ensemble 
methods such as random forests may provide better prediction 
accuracy (Berk 2006, Cutler et al. 2007, Prasad et al. 2006). 
The random forests technique generates more accurate pre-
dictions by introducing two types of randomization into the 
model building process. First, randomized bootstrap samples 
are drawn from the training data to construct multiple trees. 
Second, each tree is grown with a randomized subset of the 
explanatory variables. 

I used RandomForests software version 1.0 (Salford Sys-
tems, San Diego, CA, USA) for all random forests analyses. 
I ran my random forest models using the default settings of 
500 bootstrap samples, three terminal nodes per tree, and the 
standard error method for validating trees. I set aside 25% of 
the training data from the bootstrap samples for out-of-bag 
observations used to validate the models based on classifica-
tion accuracy rates. 

Table 1.  Description of explanatory variables used in species distribution models for American Oystercatcher distribution in coastal New 
Jersey in 2007.

Variable Description Data type Predicted association Data range

Habitat Habitat suitability index (probability of oystercatcher presence) 
based on previous species distribution model (Virzi et al. 2010)

Continuous Higher = More abundant 0.00–0.82  
(Low – High)

Rank Ranking of beaches by approximate level of recreational 
disturbance; based on ownership/management of land, extent of 
coastal development, and personal observations (T. Virzi)

Categorical Higher = Less Abundant 0 – Very Low 
1 – Low 

2 – Moderate 
3 – High

Drive06 Driving on beach allowed during June Categorical Driving = Not Present 0 – No 
1 – Yes

Drive05 Driving on beach allowed during May Categorical Driving = Not Present 0 – No 
1 – Yes

Drive04 Driving on beach allowed during April Categorical Driving = Not Present 0 – No 
1 – Yes

Drive03 Driving on beach allowed during March Categorical Driving = Not Present 0 – No 
1 – Yes

a Variable was excluded from training data for all data points on beaches where public access was completely restricted. For the Maxent model, a value of 
–9999 was used to indicate the missing data.

b Predicted association with oystercatcher probability of presence or abundance.
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Finally, I used a species distribution modeling approach 
developed in a machine-learning environment (MAXENT) 
(Phillips et al. 2006). MAXENT estimates a species’ target 
probability distribution by finding the probability distribution 
of maximum entropy (i.e. closest to uniform), subject to the 
constraint that the expected value of each environmental vari-
able (or derived feature) and/or interactions under this target 
distribution should match its empirical average (Phillips et 
al. 2006). MAXENT ordinarily uses presence-only data to 
train the explanatory models; however, absence data may be 
incorporated into the training data to predict the probability 
distribution (Phillips et al. 2006).

I used MAXENT software version 3.2.1 (which is free-
ly available for download from http://www.cs.princeton.
edu/~schapire/maxent) to run maximum entropy models. I 
ran my MAXENT models using the recommended default 
settings for maximum iterations (500), convergence thresh-
old (10-5) and regularization (1), which have been shown to 
improve model performance and reduce over-fitting (Dudik 
et al. 2007, Phillips et al. 2006). The final MAXENT model 
was validated by setting aside 25% of the training data as 
test data and comparing predictions using the area under the 
receiver operating characteristic (ROC) curve.

Model comparison 

In order to compare the overall performance of the different 
classification models, I used a threshold-independent test 
 examining the ROC curves for each model. The ROC curve 
plots model sensitivity (or true-positive rate) on the y-axis 
against the commission rate (1 – specificity, or false-positive 
rate) on the x-axis (Fielding & Bell 1997, Swets 1988). Models 
are evaluated based on the area under the curve (AUC) which 
ranges from 0 to 1, where a score of one indicates perfect model 
discrimination, a score >0.75 indicates good model discrimina-
tion, and a score <0.50 indicates that the model is performing 
no better than random (Elith et al. 2006, Swets 1988). 

RESULTS

CART models

The classification tree model performed well, exhibiting good 
discrimination ability (AUC = 0.93). The final classification 
tree had seven terminal nodes (Fig. 1). Selection of the final 
tree size was based on the modal tree size under the 1-SE 
rule reported in the 10-fold cross-validation analysis (Fig. 
3a). The first split in the tree was based on the distance from 
the nearest beach access point, with values ≤144 m indicating 
that oystercatchers were predominantly absent (n = 45). When 
distance from access point was >144 m, the next split was 
decided by the ranking of beach disturbance. Oystercatchers 
were predominantly absent from highly disturbed beaches 
(Rank = 3, n = 14). On less disturbed beaches (Rank = 0, 1, 
2) the habitat suitability index was the next splitting variable, 
with most occurrence records in less suitable habitat (Habitat 
≤0.57, n = 41). The first three branches of the classification 
tree explain most of the variation in the tree, as indicated by 
the length of the branches. 

The regression tree model did not perform quite as well, 
explaining only 37% of the total variation in the tree with a 
cross-validation error rate of 0.65 (Fig. 2). I chose a final tree 
with only three terminal nodes, which was smaller than the 
modal tree size indicated by the cross-validation plot (Fig. 3b) 
because the more parsimonious tree was within 1-SE of the 

Fig. 1.  Classification tree analysis showing probability of oystercatch-
er presence or absence in response to human disturbance in coastal 
New Jersey in 2007. Splitting variables and their decision values are 
recorded at each non-terminal node of the tree. The length of each 
branch is proportional to the variation explained by the variable used 
at each split. Each terminal node is labeled (classified) according to 
whether oystercatchers are predominantly present or absent, and 
includes the proportion and number (in parentheses) of observations 
in that class. The misclassification rates for training and test data were 
9.6% and 15.4%, respectively. 

Fig. 2.  Regression tree analysis showing the effect of human distur-
bance on oystercatcher abundance in coastal New Jersey in 2007. 
Splitting variables and their decision values are recorded at each 
non-terminal node of the tree. Each terminal node is labeled with the 
mean number of oystercatcher pairs occurring within a 100 m radius 
surrounding each training data point, SD, and the number of obser-
vations at the node (in parentheses). The length of each branch is 
proportional to the variation explained by the variable used for each 
split. The tree explained 37.1% of the total sum of squares.
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minimum error tree and the total error rate was high for all 
trees. The results of the final model showed strong relation-
ships between oystercatcher abundance and two explanatory 
variables: habitat suitability and beach rank. When the habitat 
suitability index was >0.71, the mean density of oystercatch-
ers was 4.50 per 100 m (n = 8). When the index was ≤0.71, 
the remaining training data were split by beach rank, with 
highly disturbed beaches reporting a much lower density 
(0.11 per 100 m, n = 57) than less disturbed beaches (1.07 
per 100 m, n = 71). 

Variable importance in the CART models was based on 
the total variation explained by each variable at all nodes in 
the tree (Table 2). The three most important variables in the 
classification tree model were the same as those indicated 
by the final tree presented in Fig. 1. In the regression tree 
model, distance from access point contributed substantially 
to the final model although it was excluded from the three-
node tree presented in Fig. 2. The explanatory variable for 
driving on beaches in May did not show up in either of the 
final CART models; however, this variable did contribute to 
each of the final models. Driving in other months contributed 
to a lesser degree. 

Random forests model

The random forests model also performed well, exhibiting 
good discrimination ability (AUC = 0.94). Further, the total 

misclassification rate for the model was low at 10.30%. 
However, this modeling technique did not perform much 
better than the simpler classification tree model (AUC = 
0.93). The top four explanatory variables contributing to 
the final random forests model were the same as those for 
the classification tree model; however, the ranking of vari-
able importance was ordered differently (Table 2). The most 
noticeable difference was that distance from access point 
dropped to the second most important variable while beach 
rank became the most important variable. This was likely due 
to the classification tree model allowing surrogate values to 
be used for missing data while the random forests did not, and 
there were missing values in the beach access variable that 
used beach rank as the surrogate values. Another difference 
between the random forests and CART models was that habi-
tat suitability became less important than driving on beaches 
in May, which became the third most important explanatory 
variable on oystercatcher distribution.  

MAXENT Model

The MAXENT model performed better than either of the two 
previous models, exhibiting very good discrimination ability 
(AUC = 0.98). The variable contributions to the MAXENT 
model were ranked in the same order as those for the random 
forests model (Table 2). One difference between the MAX-
ENT model and the other models was the relative contribution 

Table 2.  Variable contributions to species distribution models for American Oystercatcher distribution in New Jersey in 2007. Numbers in 
parentheses indicate rank of variable importance in the final model.

Variable Classification tree Regression tree Random forests Maxent model

Access 40.9 (1) 17.5 (3) 27.4 (2) 27.5 (2)
Rank 28.9 (2) 18.2 (2) 44.4 (1) 56.6 (1)
Habitat 12.0 (3) 55.5 (1) 9.6 (4) 7.0 (4)
Drive05 9.9 (4) 6.1 (4) 10.6 (3) 8.8 (3)
Drive03 6.4 (5) 0.0 1.6 (7) 0.0
Drive06 1.4 (6) 0.0 4.2 (5) 0.1 (5)
Drive04 0.3 (7) 2.8 (5) 2.4 (6) 0.0

100.0 100.0 100.0 100.0

Fig. 3.  Cross-validation plots for (a) the classification tree analysis and (b) the regression tree analysis. Plots report the relative error for a 
single representative 10-fold cross-validation and include 1-SE estimates for each tree size used in the analyses. The dashed lines indicate 
the 1-SE cutoff above the minimum error values for each analysis. The bar charts show the relative proportions of trees of each size used in 
each analysis based on the 1-SE rule (white bars) and minimum error rule (black bars) from a series of 50 cross-validations. The most likely 
tree size in each analysis (7 nodes) was determined by the modal size (under the 1-SE rule) reported in each series of cross-validations. We 
chose to use a more parsimonious tree (3 nodes) for our regression analysis since this sized tree was within the 1-SE rule, and since the total 
relative error rate did not improve much by using the larger tree.

a b
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of the variables for driving in months other than May. In the 
MAXENT model, these explanatory variables have little or 
no contribution to the final model.

In order to illustrate the effects that the most important 
explanatory variables had on the MAXENT distribution I in-
cluded response curves for the top four contributing variables 
(Fig. 4). The response curves offer additional insight into the 
intensity and direction of the response, showing that there was 
a very low probability of oystercatcher presence on highly 
disturbed beaches (Rank = 3). Additionally, oystercatchers 
were not predicted to occur on beaches that permit driving in 
May (Drive05 = 1). Finally, the probability of oystercatcher 
presence increased substantially as the distance from access 
points and habitat suitability values increased. 

DISCUSSION

In conservation based studies it is inevitable that a species 
will not occupy all suitable habitat (Fielding & Bell 1997). 
Metapopulation theory and source-sink dynamics predict 
that a species will occupy a broad range of habitat suitability 
 (Akcakaya et al. 2003, Pulliam 1988). Thus, only a small 
percentage of highly suitable habitat will be occupied at any 
given time and the actual distribution may be quite differ-
ent than the predicted realized niche of the species (Pulliam 
2000). In unsaturated populations, available highly suitable 
habitat should be filled if the population expands (Fielding 
& Bell 1997). The amount of highly suitable oystercatcher 
habitat along the New Jersey coastline is severely limited; 
however, there are areas on the state’s barrier beaches pre-
dicted to be highly suitable that lack oystercatchers altogether 
or that have very low densities of breeding pairs. My results 
suggest that human disturbance is causing oystercatchers to 
avoid these highly suitable areas.

All of the modeling techniques used in this study showed 
good discrimination ability based on AUC values. The MAX-
ENT model (AUC = 0.98) outperformed both the classifica-
tion tree model (AUC = 0.93) and random forests model 
(AUC = 0.94); however, all models were useful in predicting 
the distribution. The classification tree model proved very 
 effective with similar results as the more complex techniques, 
and provided results that were easy to interpret, making this 
a useful technique.

The top four explanatory variables contributing to the 
distribution were identical for all classification techniques, 
although the rank order was different. In the absence of 
human disturbance, there should be a high probability of 
oystercatcher presence on barrier beaches with high habitat 
suitability values. However, habitat suitability contributes 
much less to the overall distribution than expected in all 
models, indicating that other factors affect the distribution 
to a greater degree. The top two variables in all models were 
distance from nearest beach access point and beach rank 
indicating that recreational disturbance trumps habitat suit-
ability in predicting the local oystercatcher distribution. The 
regression tree model provides evidence that oystercatchers 
are most abundant in highly suitable habitat (density = 4.50 
pairs per 100 m), and that oystercatchers are least abundant 
in less suitable habitat when combined with high levels of 
recreational disturbance (density = 0.11 pairs per 100 m). 
Thus, oystercatchers are crowding into the small areas of 
highly suitable breeding habitat that are protected from 
 human disturbance.

There is a temporal effect of driving on beaches on oyster-
catcher distribution. Driving in the month of May, which 
is the peak nest initiation period for oystercatchers in New 
 Jersey (T. Virzi, pers. obs.), influences the distribution to some 
degree in all of the models. In the MAXENT and random 
forests models, this explanatory variable surpasses habitat 
suitability in importance. I interpret this as evidence that 
driving on beaches in May is displacing oystercatchers from 
habitat that might otherwise be used for nesting. 

American Oystercatchers appear to be moving into salt-
marsh habitat in greater numbers in New Jersey in response to 
the high levels of human disturbance on barrier beaches. Non-
traditional, river island nesting habitats used by American 
Oystercatchers breeding in North Carolina were considered 
sub-optimal and were thought to be functioning as ecological 
traps (McGowan et al. 2005). If American Oystercatchers in 
New Jersey are moving into saltmarsh habitat due to lower 
levels of human disturbance there but are experiencing lower 
reproductive success in this habitat for other reasons, the 
marshes may be acting as ecological traps as well.  

Virzi et al. (2010) found that human disturbance was not 
among the most important factors affecting oystercatcher nest 
success; however, other studies have shown that disturbance 

Fig. 4.  Variable response curves based on the final Maxent model for the four most important explanatory variables for American Oystercatcher 
species distribution models in coastal New Jersey in 2007. The response curves show the effects of the top four variables on the predicted 
probability of oystercatcher presence taking into consideration dependencies induced by correlations between variables. The first explanatory 
variable (Rank) is a categorical variable for the level of human disturbance, with the following parameter values: 0 – very low, 1 – low, 2 – 
moderate, and 3 – high. The second variable (Drive05) is also categorical with values of 0 (beach closed to driving during May) or 1 (beach 
open to driving during May). The third variable (Access) is a continuous variable for the distance to nearest access point in meters. The final 
variable (Habitat) is a continuous variable for based on habitat suitability values, with higher values indicating higher suitability.
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alters oystercatcher incubation behavior (McGowan 2006, 
Sabine 2006, 2008) and chick rearing ability (Leseberg 
2000). Thus, reproductive output could be directly reduced 
in response to high levels of disturbance. Human disturbance 
could also indirectly affect reproductive output if density-
dependent factors alter breeding behavior. The severe reduc-
tion of highly suitable breeding habitat on barrier beaches 
may force oystercatchers to breed in higher than normal 
densities in the limited remaining suitable habitat, which is 
a hypothesis supported by the differential densities shown in 
my regression models. Reproductive success for oystercatch-
ers may be reduced in several ways if all breeding individuals 
continue to be crowded into smaller and smaller areas (e.g. 
intraspecific competition for food resources on high density 
islands may reduce chick survival and fledge rates for some 
individuals). Clutch size and reproductive output are reduced 
in many oystercatcher species at high breeding densities 
(Hockey 1996). Further, competition for nest-sites could lead 
to decreased fitness for some individuals if they are forced to 
breed in sub-optimal habitat or are excluded from breeding 
altogether (Ens 1992). 

The current distribution of oystercatchers in New Jersey 
may be limiting the population growth rate due to the number 
of individuals crowding into sub-optimal marsh habitat. Even 
though the local population growth rate may be a limiting 
factor, the population size in New Jersey is likely to remain 
relatively stable looking forward due to immigration from 
other parts of the species’ range as the species continues 
a northward range expansion. However, the proportion of 
individuals currently using sub-optimal habitat is likely to 
remain unchanged unless more highly suitable beach habitat 
becomes available. Unless additional highly suitable breeding 
habitat becomes available for oystercatchers in New Jersey 
it is possible that this population could act as a sink for the 
overall oystercatcher population. Creation of additional 
barrier beach habitat in New Jersey is highly unlikely since 
most of the coastal land there is already heavily developed. 
The best way to create more highly suitable breeding habitat 
is to improve conditions on existing undeveloped sections 
of beaches.

One way to improve conditions on existing beaches would 
be to restrict access during the months of April through July 
in any areas that have highly suitable habitat, especially when 
those areas are distant from public access points (>144 m). 
These areas are severely limited in New Jersey since most 
barrier beaches are already highly developed. Therefore, the 
few beaches where these conditions exist are high priority 
 areas for protection. Further, all beaches predicted to be 
highly suitable habitat should be closed to driving no later 
than May 1 to encourage settlement by breeding oystercatch-
ers, and potentially other threatened and endangered beach-
nesting birds. Future studies should examine the effects of 
different types of recreational disturbance on oystercatcher 
distribution and reproductive performance, especially in 
alternative breeding habitats such as saltmarsh, inlet and 
dredge-spoil islands where oystercatchers are predicted to 
be most prevalent. Further, research into appropriate buffer 
distances to minimize the effects of recreational disturbance 
should also be conducted. 

The species distribution modeling techniques I implement-
ed are useful tools for conservation biologists. I have shown 
that CART models are easy to use and interpret, making them 
ideal for analyzing the effects of explanatory variables on spe-
cies distributions. The results of my CART models show that 
both recreational disturbance and driving on beaches  affect 
the distribution of oystercatchers, providing conservation 

managers with valuable information that should help them 
make informed decisions as to where and when restrictions 
on beach access or driving should be implemented. 
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