Predicting American Oystercatcher Breeding Distribution in an Urbanized Coastal Ecosystem Using Maximum Entropy Modeling

Thomas Virzi, Ph.D.

Department of Ecology, Evolution and Natural Resources
Rutgers University

Co-Authors:
Julie L. Lockwood, Ph.D. - Rutgers University
Richard G. Lathrop, Jr., Ph.D. - Rutgers University
David Drake, Ph.D. - University of Wisconsin, Madison

RUTGERS

Research Objectives

1. Evaluate the factors influencing AMOY nest success across a mosaic of habitats
2. Determine the extent of use of alternative breeding habitat by AMOYs in New Jersey
3. Identify the factors affecting AMOY distribution in a highly urbanized coastal ecosystem

AMOY Breeding Habitat

Oystercatcher Breeding Habitat

- Barrier Beach

AMOY Breeding Habitat

Oystercatcher Breeding Habitat

- Barrier Beach
- Saltmarsh

AMOY Breeding Habitat

Oystercatcher Breeding Habitat

- Barrier Beach
- Saltmarsh

AMOY Breeding Habitat

Oystercatcher Breeding Habitat

- Barrier Beach Saltmarsh
- Natural/Artificial Islands

Alternative Habitat

Nest Success Study - Summary

- 2-Year Study (2005-2006)
- 3 Study Sites
- Sample Size
- 205 Nests
- 61 Broods
- Modeled Nest Survival in Response to:
- Habitat Type
- Nest Height
- Mammal Activity
- Gull Density
- Human Disturbance

Nest Success Study - Summary

Nest Survival Models

- DSR based on best model used to predict trends
- Nest success influenced most heavily by presence of mammalian predators (at both stages)

Nest Success Study - Summary

Research Objectives

1. Evaluate the factors influencing AMOY nest success across a mosaic of habitats
2. Determine the extent of use of alternative breeding habitat by AMOYs in New Jersey
3. Identify the factors affecting AMOY distribution in a highly urbanized coastal ecosystem

- Coastal development
- Recreational disturbance

Species Distribution Modeling

- Niche Modeling
- Explanatory Model
- What factors lead to observed distribution of AMOYs in NJ?
- Predictive Model
- Where else are AMOYs in NJ?

Niche Modeling

Niche Modeling

Niche Modeling

MAXENT Model - Methods

Maximum Entropy Modeling

- Model distribution based on known occurrences
- Distribution limited by some constraints
- Habitat features
- Urbanization
- Prey Resources
- Predation

MAXENT Model - Methods

Maximum Entropy Modeling

- In the absence of influences other than those included as constraints in the model, the geographic distribution of a species will tend toward the distribution of maximum entropy (Phillips et al. 2006)
- Presence only modeling technique
- Robust to small sample sizes
- Better predictions than many other SDM techniques

MAXENT Model - Methods

Maximum Entropy Modeling

- Estimate a target probability distribution by finding the probability distribution of MAXIMUM ENTROPY subject to a set of constraints
- Entropy = measure of how much choice is involved in the selection of an event (Shannon 1948)
- Maximum Entropy Distribution = most spread out or closest to uniform
- 1st Law of Thermodynamics: In systems without outside influences, processes move in a direction that maximizes entropy

MAXENT Model - Methods

Maximum Entropy Modeling

- Estimate a target probability distribution by finding the probability distribution of maximum entropy subject to a set of CONSTRAINTS
- Constraints: The expected value of each feature should equal the average value of sample points
- Features = Habitat Variables = Model Parameters
- BACKGROUND DATA (random points)
- Pixels of study area make up the space on which the Maxent probability distribution is defined
- Sample Points = Occurrence Records
- TRAINING DATA (actual occurrences)

MAXENT Model - Methods

Model Parameters

- Abiotic
- Habitat classification
- Area of habitat features
- Distance from nearest inlet
- Distance from tidal water
- Biotic
- Prey availability measures
- Area of low marsh
- Area of tidal flats
- Anthropogenic
- Area of urbanization
- Distance from development

MAXENT Model - Methods

Model Training and Validation Data

- Training Data
- 67 occurrence records (breeding pairs)
- Subset of data to reduce spatial autocorrelation
- Test Data
- 25\% of training data set aside to test models
- Validation Data
- 283 randomly selected survey points
- Independent dataset

MAXENT Model - Methods

Model Validation

- Evaluated using receiver operating characteristic (ROC) curves
- Plots true positive rate against false positive rate
- Area under the curve (AUC) values used to evaluate models

MAXENT Model - Methods

Hypothetical ROC Curves

MAXENT Model - Methods

Hypothetical ROC Curves

MAXENT Model - Methods

Hypothetical ROC Curves

MAXENT Model - Methods

Model Validation

- Validated model with independent dataset
- Compared ROC curve for validation data with MAXENT model results
- Examined errors of omission and commission separately
- Omission = prediction of absence when actually present (false negatives)
- Commission = prediction of presence when actually absent (false positives)

MAXENT Model - Results

Predicted Distribution

Predicted Distribution

MAXENT Probability of Occurrence

Value
High: 1

Low: 0

MAXENT Model - Results

Actual Distribution

Breeding Pairs

 2007 Surveys- Barrier Island Beaches

MAXENT Model - Results

Actual Distribution

Breeding Pairs 2007 Surveys

- Barrier Island Beaches
- Alternate Breeding Habitat

MAXENT Model - Results

Predicted Distribution

MAXENT Probability
of Occurrence
Value
High: 1
Low: 0

MAXENT Model - Results

Predicted and Actual Distribution

Habitat Type	No. Pairs	\% Total
Barrier Beach	60	19.4%
Saltmarsh	213	69.0%
Inlet Islands	10	3.2%
Dredge Islands	26	8.4%
	309	100.0%
Total		

MAXENT Model - Results

Variable Contributions (Heuristic Estimate)

Variable	\% Contribution
Distance from nearest tidal waters	46.8%
Habitat classification	33.3%
Distance from nearest inlet	10.9%
Area of low marsh edge within 100 m radius	3.6%
Area of tidal flats within 1 km radius	1.7%
Area of urbanization within 100 m radius	1.6%
Area of tidal flats within 100 m radius	1.6%
Area of low marsh edge within 1 km radius	0.4%
Area of urbanization within 1 km radius	0.1%
Total Contribution	100.0%

MAXENT Model - Results

Variable Contributions (Jackknife Tests)

MAXENT Model - Results

Variable Response Curves

MAXENT Model - Results

Model Validation

MAXENT Probability

 of OccurrenceValue
High: 1
Low: 0

MAXENT Model - Results

MAXENT ROC Curves

(Internal Validation)

MAXENT Model - Results

ROC Curves

(MAXENT vs. Independent Validation)

MAXENT Model - Results

MAXENT Model - Discussion

- Omission Error Rate
- High false negative rate
- There are a large number of AMOYs in habitat that is predicted to be unsuitable

MAXENT Model - Discussion

- Omission Error Rate
- High false negative rate
- There are a large number of AMOYs in habitat that is predicted to be unsuitable

MAXENT Model - Discussion

- Commission Error Rate
- High false positive rate
- There are many areas predicted to be suitable that do not have AMOYs

MAXENT Model - Discussion

- Commission Error Rate
- High false positive rate
- There are many areas predicted to be suitable that do not have AMOYs

MAXENT Model - Discussion

- Why are so many AMOYs occurring in unsuitable habitat?

MAXENT Model - Discussion

- Why are so many AMOYs occurring in unsuitable habitat?
- Modeling errors:
- Spatial autocorrelation of training data
- Excessive number of model parameters
- Data errors:
- Missing variables that influence distribution (e.g. wrack deposits)
- Misclassifications in GIS layers (e.g. small sand patches)

MAXENT Model - Discussion

- Why are so many AMOYs occurring in unsuitable habitat?
- Source-sink dynamics
- Despotic distribution (Ens 1992)
- Severe lack of highly suitable habitat in New Jersey
- Human disturbance displacing oystercatchers from highly suitable habitat

MAXENT Model - Discussion

- Why are so many AMOYs occurring in unsuitable habitat?
- Source-sink dynamics
- Despotic distribution (Ens 1992)
- Severe lack of highly suitable habitat in New Jersey
- Human disturbance displacing oystercatchers from highly suitable habitat

MAXENT Model - Discussion

- Why are so many AMOYs occurring in unsuitable habitat?
- Source-sink dynamics
- Despotic distribution (Ens 1992)
- Severe lack of highly suitable habitat in New Jersey
- Human disturbance displacing oystercatchers from highly suitable habitat

MAXENT Model - Discussion

- Why are so many AMOYs occurring in unsuitable habitat?
- Source-sink dynamics
- Despotic distribution (Ens 1992)
- Severe lack of highly suitable habitat in New Jersey
- Human disturbance displacing oystercatchers from highly suitable habitat

Research Objectives

1. Evaluate the factors influencing AMOY nest success across a mosaic of habitats
2. Determine the extent of use of alternative breeding habitat by AMOYs in New Jersey
3. Identify the factors affecting AMOY distribution in a highly urbanized coastal ecosystem

- Coastal development
- Recreational disturbance

CART Models - Methods

- Classification and regression tree (CART) models explain the variation of a single response variable by repeatedly splitting the data into more homogeneous groups based on multiple explanatory variables (De'Ath \& Fabricius 2000)
- Classification Models - Presence or Absence
- Regression Models - Density
- Compared with other techniques
- Random Forests
- MAXENT

CART Models - Methods

- Grow an overlarge tree by splitting data into homogeneous groups
- Prune by 10 -fold cross validation process (run 50 times)
- Goal - find the most parsimonious tree that explains the most variance

CART Models - Methods

- Training Data
- 68 presence and 68 absence records
- Data from 2007 surveys on barrier beaches
- AMOY abundance recorded at all survey points
- Explanatory Variables
- Habitat suitability (based on MAXENT model)
- Beach disturbance level (rank)
- Distance from nearest public beach access point
- Driving on beach permitted during March, April, May or June (separate variables)

CART Models - Methods

Random Forests Model

- Grow a forest of trees (500 trees)
- Randomization introduced into each tree
- Bootstrap training data
- Randomly select variables

CART Models - Results

- Classification Tree
- Length of branches proportional to variance explained at each split
- Habitat less important variable than expected
- Most occurrences on less disturbed beaches distant from access points

CART Models - Results

- Regression Tree
- Density highest in most highly suitable habitat
- However, most training points are in less suitable habitat (128 of 136)
- Density lowest on most highly disturbed beaches

CART Models - Results

Comparison of Techniques:
Variable Contributions

Conclusions

Most oystercatchers (~80\%) breed in alternative habitats in New Jersey
— Important factors influencing local distribution include: proximity to inlets and presence of sand substrate for nesting

Recreational activity influences local distribution, excluding AMOYs from highly suitable habitat

Saltmarsh and barrier beach habitats may be acting as sinks

Acknowledements

- Kristen Faust
- Jeff Faust
- David Ehrenfeld
- Todd Pover
- Dave Jenkins
- Jim Merritt
- Larry Niles
- Steve Atzert
- Stephen Phillips

CRSSA Lab

- Jim Trimble
- John Bognar
- Aaron Love
- Scott Haag
- Mike Mills
- Inga Parker
- Caroline Phillipuk
- Zewei Miao

Support Provided by:

- Graduate Program in Ecology \& Evolution Rutgers University
- The Grant F. Walton Center for Remote Sensing \& Spatial Analysis - Rutgers University
- New Jersey Division of Fish \& Wildlife Endangered and Nongame Species Program
- New Jersey Division of Fish \& Wildllife - Sedge Island Natural Resource Education Center
- US Fish \& Wildlife Service - Edwin B. Forsythe National Wildlife Refuge
- New Jersey Division of Parks \& Forestry Island Beach State Park
- The Save Barnegat Bay Foundation

IES Fith a wirniry Truing Edwin B. Forsythe National Wildilife Refuge

