

Establishing Bird Conservation Priorities

American Oystercatcher Working Group Ocracoke Island, North Carolina

Investment Strategies

Conservation Importance

Risk

Benefits:Cost

Investment Strategies

Single Species

Issues

Single Species (Ripple Effect)

Habitat

Conservation Importance

Conservation Importance

Population Trend	1-5
Abundance	1-5
Threats	1-5
Distribution	1-5

• Min Score = 4 (Low Priority)

• Max Score = 20 (High Priority)

Widdlife town

Risk

The chance that an investment's actual return will be different (lower) than expected

Investment Risk (*Likelihood of Success*)

- Conservation/Recovery Plan
- Identification of Threats and Management Actions
- Implementation Infrastructure
- Complexity of Threats and Solutions

Monetary Cost

The unmet costs associated with achieving the stated population objective

Action 1: Restore, enhance & maintain 70,000 acres of private lands. Cost =\$16 million

Action 2: Develop & implement incentives program for habitat conservation in Mexico. Cost =\$11 million

Black-capped Vireo

Action 3: Develop & facilitate implementation of Recovery Credit System for DoD, corporations, developers, etc. Cost =\$1 million

TOTAL COST: \$28 million 10-15 years

Estimating Benefits

Estimating Benefits through Conservation Scores

Population Size Current Score: 5 Target Score: 5

Distribution Current Score: 5 Target Score: 5

Threats

Current Score: 5 Target Score: 3

Population Trend Current Score: 5 Target Score: 2

Estimating Benefits through **Population Change**

How do we balance BENEFITS and RISK?

Risk = **3** Marginal Benefit = **14**

S = **4.**7

Risk = **3** Marginal Benefit = **4**

S = 1.3

How do we balance BENEFITS and COST?

Expected [Benefits _{NFWF Investment} – Benefits _{No NFWF Investment}] Benefit:Cost Ratio = Cost

Cost = **\$28 million** Marginal Benefit = **14**

Benefit:Cost Ratio = 0.5

Cost = \$13 millionMarginal Benefit = 4

Benefit:Cost Ratio = 0.3

Focus

Single species Single species – ripple Habitat-based (multiple species) Issue-based

Recovery of endangered species? Keeping species from becoming endangered?

Risk Lower risk through research?

Timeline

Other Considerations

Evaluating Individual Projects

Concept similar to that used to identify Keystone priorities

Benefits Costs Risk

Development of Business Plan

Priority Actions Priority Locations Estimated Costs Timeline Key Partners

