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We apply decision theory in a structured decision-making framework to evaluate how control of raccoons
(Procyon lotor), a native predator, can promote the conservation of a declining population of American
Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective
was to maintain Oystercatcher productivity above a level deemed necessary for population recovery
while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and
applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive
optimization can be used to account for uncertainties about how raccoon control may affect Oyster-
catcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well
suited for addressing controversial management issues such as native predator control. The case study
also offers several insights that may be relevant to the optimal control of other native predators. First,
we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most
efficient if the reproductive values among stage classes were very different. Second, we found that the
optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels
recommended for this species. Third, we found that removing more raccoons initially minimized the total
number of removals necessary to meet long term management objectives. Finally, if for logistical reasons
managers cannot sustain a removal program by removing a minimum number of raccoons annually,
managers may run the risk of creating an ecological trap for Oystercatchers.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

High predation rates can be a serious problem for many pro-
tected species and managers may seek to eradicate or control pre-
dators that threaten protected prey populations (Courchamp et al.,
2003; Meckstroth and Miles, 2005; Baxter et al., 2008). However,
predator removal programs can be controversial and have demon-
strated only mixed success (Côté and Sutherland, 1997). They have
been criticized as ineffective, costly, requiring unsustainable effort,
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lacking specificity for the target predator, and increasingly, are
viewed negatively by the public (Goodrich and Buskirk, 1995).
Unfortunately, many predator removal programs have used an
ad hoc approach when removing individuals, with little prior
knowledge or consideration of impacts on either the predators
themselves, the target prey, or the scope of the unintended conse-
quences to other species in the system.

Although alien predators are considered more dangerous than
native predators in the decline and extinction of prey species (Salo
et al., 2007), the impact of native predators on prey can also be sig-
nificant under certain conditions (e.g., meso-predator release, sub-
sidized predators [Crooks and Soulé, 1999; Gommper and Vanak,
2008]). Indeed, anthropogenic influences can result in an increase
in food availability and cover, thereby increasing predator carrying
capacity. Also, the effects of predation can be magnified if the abun-
dance of prey species is reduced due to overharvest, pollution, com-
petition from introduced species, or habitat loss or fragmentation.
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Prey species often do not have adequate time to adapt to such
abrupt system changes. In the case of predator–prey interactions,
a number of indigenous, generalist predators have recently become
overabundant, posing a severe threat to some prey species (Garrott
et al., 1993). Under these circumstances, predator control may be an
appropriate and necessary management action.

Predator control is not a panacea, however, and science-based
predictions of the potential efficacy of predator control, as well
as the effects on other species in the system, are needed to conduct
defensible management, which is especially critical in light of the
controversial nature of these programs (Sinclair et al., 1998). Con-
trol of a native species can be especially problematic and often re-
sults in unintended consequences for established relationships or
interactions among species (Goodrich and Buskirk, 1995). If preda-
tor control programs are not carefully implemented, removal ac-
tions can actually favor the spread of or increase the abundance
of the predator (Sih et al., 1985; Abrams, 2009). A review of studies
involving manipulation of predator populations showed that a
sizeable proportion of studies (40%) exhibited some type of unex-
pected response (e.g., increase in population size and predatory ef-
fect of a species that was formerly competitively excluded by the
predator targeted for removal; Sih et al., 1985) through unintended
pathways (Pimm, 1991; Bergstrom et al., 2009).

Structured decision-making (SDM) provides a promising frame-
work to help resolve controversial management problems by: (1)
clearly identifying the objectives; (2) adding transparency to the
decision process (e.g., Martin et al., 2009); (3) including stakehold-
ers in the decision process (e.g., recreation groups); (4) developing
explicit predictions of system response to control actions that can
be checked against monitoring data; and (5) identifying decisions
that are optimal with respect to the management objectives and
the current knowledge of the system (and account for important
sources of uncertainty, Williams et al., 2002).

Here we illustrate this approach by focusing on the control of
raccoons (Procyon lotor) to protect American Oystercatcher
(Haematopus palliatus) populations in coastal North Carolina, as a
case study in the application of SDM to predator control programs.
We emphasize the importance of carefully identifying an objective
function that simultaneously captures several management goals,
in this case increased nesting success of the prey species and via-
bility of the predator species. We also investigate the value of
selectively controlling predators of different age classes, as op-
posed to removing predators non-selectively. Finally, we consider
adaptive management (Walters, 1986; Johnson et al., 1997; Wil-
liams et al., 2002) as a special case of SDM, in which management
decision-making is iterated over time, and monitoring data are
used to update understanding of system behavior and knowledge
of the system state, to allow for long-term optimal decision-
making.
2. Methods

2.1. Study area

Cape Lookout and the barrier islands between Beaufort and
Ocracoke Inlets comprise the southern portion of the Outer Banks,
along the central coast of North Carolina. Our work was confined to
South Core Banks (SCB), one of four barrier islands that comprise
Cape Lookout National Seashore (CLNS), a unit of the U.S. National
Park Service.
2.2. Data sources

We used a combination of information collected locally along
with data reported in the scientific literature to develop our Oys-
tercatcher and raccoon population models. Specifically, we used
estimates of raccoon abundance obtained using mark-resight data
(A. Waldstein, T. Simons, and A. O’Connell, unpublished data). Esti-
mates of Oystercatcher reproductive success were derived from
ten years of productivity monitoring on the Outer Banks of North
Carolina (Simons and Schulte, 2009).

2.3. Management objectives

The objective established by CLNS managers was to minimize
the number of raccoons to be removed while maintaining produc-
tivity of Oystercatchers above a specified threshold (i.e., utility
threshold, Martin et al., 2009). Because the raccoon is a native spe-
cies, managers also did not wish to eradicate it from SCB, wanting
instead to keep the number of raccoons above a specified mini-
mum value. The utility threshold for Oystercatcher productivity
was set at 0.35 chicks fledged per breeding pair per year. This value
was determined by estimating the minimum level of reproductive
success needed to maintain the population based on population
modeling of Oystercatcher populations in North Carolina (Schulte,
2010). The utility threshold for raccoons was set at 25 female rac-
coons (i.e., 50 individuals total assuming 1:1 sex ratio) which
should be high enough to guard against risks of extinction associ-
ated with demographic stochasticity (Morris and Doak, 2002). We
note that the model that we used to model raccoon abundance was
a typical single sex model (see Section 2.4.1), that is, we only con-
sidered the female component of the raccoon population. There-
fore, when we refer to raccoons we mean the number of females.

We worked with managers to translate their three objectives
(i.e., meet Oystercatcher productivity threshold, minimize remo-
vals, meet raccoon population threshold) into a combined utility
function:

Ut ¼ NR TOT½ �
t � dR TOT½ �

t

� �
� at � bt ð1Þ

where Ut is the utility value at time t, and is a function of the total
number of raccoons at time t (NR TOT½ �

t ) and the total number of rac-

coons removed at time t (dR TOT½ �
t ; which correspond to the manage-

ment action). The terms at and bt are penalty factors at time t.
Indeed, at is:

at ¼
E POYS

tþ1ð Þ
0:35 ; E POYS

tþ1

� �
< 0:35

1; E POYS
tþ1

� �
P 0:35

8><
>:

ð2Þ

Eq. (2) indicates that if the expected Oystercatcher productivity

after the action is implemented, E POYS
tþ1

� �
, is <0.35, then at is EðPOYS

tþ1 Þ
0:35

(i.e., the return is devalued proportionally, Kendall, 2001); other-
wise it is 1. The term bt is a penalty factor relating to the objective
of maintaining raccoon abundance above some desired level:

bt ¼
0; E NR TOT½ �

tþ1

� �
< 25

1; E NR TOT½ �
tþ1

� �
P 25

8><
>:

ð3Þ

Hence, Eq. (3) indicates that if the expected number of raccoons

after the action is implemented (i.e., E NR TOT½ �
tþ1

� �
) is less than 25, then

bt is 0 (i.e., that action is completely devalued); otherwise it is 1. In
order to meet the Seashore’s management objectives, we used an
optimization method (see next section) to find the decision that
maximizes:

Xt¼T

t¼0

Ut ð4Þ

where T is a specified time horizon. Note that the utility function to
be maximized includes the term NR TOT½ �

t � dR TOT½ �
t

� �
, which
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corresponds to the number of raccoons not removed (maximizing
this expression can be viewed as an equivalent to minimizing the
number of raccoons to be removed).

2.4. System models

We developed system models that projected the consequences
of raccoon removal on raccoon abundance as well as the effect of
raccoon abundance on the productivity of Oystercatchers (i.e.,
the models predicted the outcomes of management with respect
to the objectives). Our model of system behavior assumed the fol-
lowing sequence of events: monitoring to estimate raccoon abun-
dance occurred in September, removal of raccoons occurred
thereafter in September, and raccoon parturition occurred in May.

2.4.1. Modeling the raccoon population
Abundance of adults at the time of the monitoring in year t + 1

was described by:

NR½A�
tþ1 ¼ NR½A�

t � dR½A�
t

� �
SR½A�

12 þ NR½Y �
t � dR½Y�

t

� �
SR½Y �

12 ð5Þ

where NR½x�
t is the population size of raccoons (R) at time t, for age

class x (A: adults [>12 months]; Y: yearlings [>4 to 12 months]; N:
nestlings [1–4 months]); dR½x�

t is the number of raccoons to be re-
moved at time t, for age class x; SR½x�

j is the survival probability of
raccoons for j months, for age class x. As explained earlier, this mod-
el was a single sex model; thus, when we refer to raccoons we mean
the number of females. Abundance of yearlings was:

NR½Y�
tþ1 ¼ NR½A�

t � dR½A�
t

� �
SR½A�

8 f R½A�
t SR½N�

4 þ NR½Y�
t � dR½Y �

t

� �
SR½Y �

8 f R½Y �
t SR½N�

4 ð6Þ

where f R½x�
t is the annual fecundity of raccoons at time t for age class

x. We defined annual fecundity as the average number of nestling
females produced per adult or yearling female (Caswell, 2001). This
quantity is equal to the number of females produced per adult
breeding female multiplied by the probability that a female will
breed.

The proportion of yearlings in the population at time t was:

aR TOT½ �
t ¼ NR½Y �

t

NR½Y �
t þ NR½A�

t

ð7Þ

Our model considered the total number of female raccoons to
remove in a given September dR TOT½ �

t

� �
as the decision variable

(see also variation of this for selective, or age-specific removals de-
scribed in Section 2.5). The number of adult females removed in
the model for any value of dR TOT½ �

t was computed as:

dR½A�
t ¼ dR TOT½ �

t 1� aR TOT½ �
t

� �
ð8Þ

whereas for the yearlings it was:

dR½Y�
t ¼ dR TOT½ �

t � dR½A�
t ð9Þ

We assumed a density-dependent effect on fecundity of adult
raccoons. We modeled this effect as a log linear relationship be-
tween fecundity and the total number of raccoons in May, NR½May�

tþ1 :

f R½A�
t ¼ e b0þb1NR May½ �

tð Þ ð10Þ

where NR May½ �
t is the total number of raccoons in May just before

parturition:

NR May½ �
tþ1 ¼ NR½A�

t � dR½A�
t

� �
SR½A�

8 þ NR½Y �
t � dR½Y �

t

� �
SR½Y �

8 ð11Þ

We fitted Eq. (10) to two empirical points to estimate parame-
ters b0 (0.77) and b1 (�0.007) and to model the effect of density
dependence on fecundity (see Appendix A for details on how to de-
rive these parameters, and for a complete list of the parameter val-
ues used in the model). We did not consider an Allee effect (Morris
and Doak, 2002) in this analysis.

We assumed that yearlings are less likely to reproduce success-
fully than adults:

f R½Y �
t ¼ cf R½A�

t ð12Þ

where 0 < c < 1 (see Appendix A for details on computation of c).

2.4.2. Modeling the effect of raccoon abundance on productivity of
Oystercatchers

Productivity of Oystercatchers POYS
t

� �
was defined as the num-

ber of fledglings per breeding pair. We constructed a model that as-
sumed a log linear relationship between POYS

t and the total number
of raccoons in May:

POYS
t ¼ e b2þb3NR May½ �

tð Þ ð13Þ

We used nesting data collected on Oystercatchers from 1999 to
2007 to estimate b2 (�0.598) and b3 (�0.008) and to establish the
relationship between raccoon abundance and Oystercatcher pro-
ductivity (details on how we derived these parameters are pre-
sented in Appendix B). Although we have used the best available
information about the system under study, we recognize that there
are uncertainties associated with the parameters used in the mod-
els. However, our structured decision-making approach is particu-
larly well suited to deal with high levels of uncertainty (Williams
et al., 2002). In addition, managers generally cannot wait until bet-
ter parameter estimates become available before making their
decisions (note that doing nothing is in fact a decision, e.g., Martin
et al., 2009). The approach that we describe in the following sec-
tions allows for the identification of decisions that are optimal with
respect to the objectives, given the current knowledge of the sys-
tem and associated uncertainties (e.g., Williams et al., 2002; Martin
et al., 2009).

2.5. Optimization and simulations

2.5.1. Analysis based on best available parameter values
We used stochastic dynamic programming (Bellman, 1957;

Williams et al., 2002) to find the sequence of decisions that are
optimal with respect to our objective, given our model of the sys-
tem and associated uncertainties. We approximated the decision
problem for an infinite time horizon via backward iteration dy-
namic programming, by iterating through time steps until a stable
policy was maintained for 15 time periods, with a maximum of 100
time periods (Martin et al., 2009). We used program Adaptive Sto-
chastic Dynamic Programming (ASDP) Version 3.2 for the optimi-
zation (Lubow, 2001).

We used simulation to evaluate the consequences, with respect
to the objectives, of following the optimal policies for several sce-
narios. In particular, we were interested in examining the conse-
quences of potential management actions (i.e., removal of
raccoons) on the productivity of Oystercatchers, the number of rac-
coons removed, and the number of raccoons remaining in the pop-
ulation. We compared the average and cumulative number of
raccoons to be removed over an ‘‘infinite” time frame (approxi-
mated by looking at simulations over a period of 10,000 time
steps).

The analysis based on best available parameter values (i.e., as
described in Appendix A) was stochastic. We refer to this analysis
as stochastic because the model included some environmental
stochasticity by accounting for the process variance of survival
rates. This is in contrast with the exploratory analyses described
below, which were all deterministic. In addition, the removal
strategy for the stochastic analysis was to remove raccoons
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Fig. 1. Optimal state-dependent strategy for non-selective removal. The horizontal

axis corresponds to the number of female raccoons NR TOT½ �
t

� �
. The gray squares

correspond to the optimal number of females to remove dR TOT½ �
t

� �
. For example, if

there are 60 females in a given year, the optimal decision would be to remove 31
females during that same year. These results are for the model that uses the best
available parameter estimates and accounts for environmental stochasticity.
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without consideration of their age. In this case, the decision alter-
natives were various levels of dR TOT½ �

t (see Eq. (8) and (9)). We
named this strategy the ‘‘non-selective” removal method.

2.5.2. Exploratory analyses
Because we wanted to gain insights on the optimal control of na-

tive predators we also conducted some exploratory analyses to gain
insight into general features of the predator removal problem inde-
pendent of particular parameter values estimated for our study sys-
tem or constraints that we imposed on the optimization and
simulation exercises described above. All of the exploratory analy-
ses were based on deterministic models (i.e., constant values for
raccoon survival). This is because it was easier to illustrate general
points with the deterministic analyses. First, we compared the opti-
mization results under two removal strategies. The first strategy
was the deterministic equivalent of the stochastic analysis de-
scribed in the previous section (the only difference was that the vi-
tal rates were held constant); and was also referred to as the ‘‘non-
selective removal” strategy. The second removal strategy consisted
of selectively removing adults and yearlings; we called this strategy
the ‘‘selective” removal method. Here, the decision variables to
optimize were dR½A�

t (number of adults removed at t) and dR½Y �
t (num-

ber of yearling removed at t). The system model for the selective re-
moval was the same as the one for the non-selective removal except
that we excluded Eqs. (7)–(9) from the model. This is because the
selective removal involved two decision variables: dR½A�

t and dR½Y�
t ,

whereas the non-selective removal included only one decision var-
iable in the optimization: dR TOT½ �

t . Indeed, with the non-selective re-
moval strategy, the optimal decision given the state of the system
(i.e, how many adults and yearling were present in the population
at the time of the decision) was just one number: dR TOT½ �

t ; therefore,
we had to derive values of dR½A�

t and dR½Y �
t based on dR TOT½ �

t and aR TOT½ �
t

(Eqs .(7)–(9)). In contrast, with the selective removal the optimal
decision given the state of the system consisted of two numbers:
one for dR½A�

t and another for dR½Y �
t . In other words, with the selective

removal the values of dR½A�
t and dR½Y �

t were directly obtained from the
optimization and therefore did not need to be derived (unlike with
the non-selective removal strategy, see Eqs. (7)–(9)). The maximum
number of raccoons that could be removed at any time step was set
at 50 raccoons (i.e., dR TOT½ �

t 6 50) in the case of the non-selective re-
moval; and dR½A�

t 6 25 and dR½Y�
t 6 25 in the case of selective removal),

to reflect budgetary and logistical constraints.
Second, we compared scenarios with two levels of reproductive

values. We predicted that the selective removal approach would
lead to more efficient policies when there was a large difference
in reproductive values between yearlings and adults. To evaluate
this prediction we considered models in which we increased the
difference in reproductive values between yearlings and adults
by reducing yearling survival by 20%, increasing adult survival by
20%, and reducing c (Eq. (12)) to 0.01 instead of the estimated va-
lue of 0.64 (see Appendix A). Hereafter we refer to these as explor-
atory models that assumed a large difference in reproductive
values. In contrast, models that were based on the most realistic
parameter values (see Appendix A) assumed a small difference in
reproductive values (the difference in reproductive values is re-
ported in the Results).

Third, we wanted to explore the short term and long term ben-
efits of raccoon removal at various levels of potential effort. To do
this, we considered two additional removal scenarios, one where
the maximum number of female raccoons that could be removed
annually was 16; and one where up to 50 female raccoons could
be removed. We also identified the minimum number of female
raccoons that needed to be removed annually to maintain the Oys-
tercatcher productivity above 0.35.

Finally, we calculated a yield curve (Runge et al., 2009) for the
deterministic version of the raccoon model (Eqs. (5)–(12)) by find-
ing the equilibrium population size and removal for a range of
fixed removal rates.

2.5.3. Adaptive optimization
In the case of the non-adaptive optimization (i.e., the optimiza-

tions presented above) we only considered one model. However, to
account for both model and parameter uncertainty, we considered
multiple models and used adaptive optimization (Williams et al.,
2002). In this case, we considered two models, one assuming a
strong effect of raccoons on Oystercatcher productivity (the
parameterization of this model was based on empirical data and
corresponds to the model described above). The second model as-
sumed no effect of raccoons on Oystercatcher productivity (where
Oystercatcher productivity was set to the average value for the
period 1997–2007: 0.25, see Appendix B). When multiple models
were considered, a passive adaptive optimization algorithm (Ken-
dall, 2001; Williams et al., 2002) was used to account for model
uncertainty. In this case model uncertainty is reflected as a differ-
ence in parameter values (i.e., parameter uncertainty), as opposed
to a difference in model structure. However, adaptive optimization
can help address both types of uncertainty. Adaptive updating can
then be implemented to reduce model uncertainty over time (Wil-
liams et al., 2002).

The weights of the models (pi(t)) were updated by applying
Bayes’ Theorem (Williams et al., 2002, see also Martin et al., 2009):

piðt þ 1Þ ¼ piðtÞ � Pi xtþ1jxt ;dtð ÞPn
i¼1piðtÞ � Piðxtþ1jxt; dtÞ

ð14Þ

where Piðxtþ1jxt; dtÞ is the probability of the observed state at t + 1
under model i, given that the system was in state xt at time t (i.e.,
abundance of raccoons at t) and that decision dt (e.g., number of rac-
coons to remove at t) was implemented.

3. Results

3.1. Analysis based on best available parameter values

For the raccoon model built with the best available parameter
values (stochastic version), the optimal strategy for non-selective
removal shows that when the number of female raccoons is below
the threshold value (25), few raccoons are removed (Fig. 1). As the
number of female raccoons increases, more raccoons should be re-
moved. Fig. 2 illustrates the consequences of following the optimal
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strategy on the number of raccoons, the number of raccoons to be re-
moved, and Oystercatcher productivity. Initial raccoon abundance
in September was set to 143 raccoons for all simulations (i.e., the
current best estimate of population size in September). The optimal
policy when NR TOT½ �

t P 143 was dR TOT½ �
t = 50 (i.e. the maximum re-

moval policy). After five time steps, NR TOT½ �
t <44 and dR TOT½ �

t <18. The
2.5 percentiles remained above the utility threshold for raccoon
abundance for the rest of the time frame (Fig. 2). The productivity
Table 1
Summary of simulation results for selective (i.e., raccoons are removed according to their
their age). We also considered scenarios in which there were large and small differences in
utility value described in Eq. (4).

Model Average removal
(t = 105)

Aver
racc

Not selective/small difference in RV 7.7 34d/
Not selective/large difference in RV 6.98 35d/
Selective/small difference in RV 7.41a/7.24b/0.17c 35.6
Selective /large difference in RV 5.45a/5.45b/0.00c 34.3

a Total number of female raccoons removed at t rR TOT½ �
t

� �
.

b Number of female adult raccoons removed at t rR½A�
t

� �
.

c Number of female yearlings removed at t rR½Y �
t

� �
.

d Total number of female raccoons at t NR TOT½ �
t

� �
.

e Number of adult females at t NR½A�
t

� �
.

f Number of yearling females at t NR½Y �
t

� �
.

of Oystercatchers also remained substantially higher than the spec-
ified utility threshold for Oystercatcher productivity (Fig. 2).

3.2. Exploratory analyses

The average annual removal of female raccoons over a period of
10,000 iterations was always smaller for the selective removal than
for the non-selective removal, and the difference increased when
the difference in reproductive values between adults and yearlings
was larger (Table 1). As explained in Section 2, the model that con-
sidered a large difference in reproductive values assumed a larger
difference in survival between adult and yearling raccoons and a
smaller value of c (Eq. (12)). For both selective and non-selective
removal, average productivity remained substantially higher than
the utility threshold for Oystercatcher productivity (Fig. 2).

In our deterministic analyses (i.e., parameters were assumed to
be fixed), we found that if it was not possible to remove a maxi-
mum of 13 female raccoons annually (dR TOT½ �

t 6 13), Oystercatcher
productivity could not be maintained above 0.35. This is because
it is necessary to be able to remove more than the maximum sus-
tained yield for a short period of time to drive the population size
to the left side of the yield curve; and only if the population is held
at these lower levels can Oystercatcher productivity be maintained
at desired levels. If up to 16 female raccoons could be removed at a
time (dR TOT½ �

t 6 16), it was possible to reach the desired equilibrium
point on the left shoulder of the yield curve, but the cumulative re-
moval over 30 years was considerably higher (489 female raccoons
and it would take 14 years to reach the desired value of Oyster-
catcher productivity of 0.35) than if up to 50 raccoons could be re-
moved annually (391 raccoons and it would only take 2 years).

Based on the yield curves for the raccoon model built from the
best available parameter values (but with a deterministic version
of the model, that is, with constant values of vital rates), the carry-
ing capacity (the equilibrium population size in the absence of re-
moval) was 168 females, and the maximum sustained removal of
12.9 female raccoons occurred at a non-selective harvest rate of
14.7% and an equilibrium population size of 87 females (Fig. 3).
For the exploratory raccoon model with the large difference in
reproductive values, the carrying capacity was 222 females, and
the maximum sustained yield of 12.2 females occurred at a non-
selective harvest rate of 11.2% and an equilibrium population size
of 110 females (Fig. 3).

3.3. Adaptive optimization

When equal weights were initially assigned to our two models
(one where raccoons affected Oystercatcher productivity and one
age) and non-selective removal of raccoons (i.e., raccoons are removed irrespective of
reproductive values (RV) between yearlings and adults. The utility corresponds to the

age number of
oons (t = 105)

Cumulative
utility (t = 105)

Average Oystercatcher
productivity (t = 105)

19e/15f 412,993 0.465
21e/14f 425,465 0.459
d/20.4e/15.2f 423,106 0.458
d/21.3e/13f 439,296 0.455
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where raccoons had no effect), the optimal dR TOT½ �
t¼1 was 50 on the

first iteration of the simulation (if NR TOT½ �
t¼1 = 143, which correspond

to the number of female raccoons in September), no matter which
model was the ‘‘true” model (Fig. 4a). However, the adaptive pro-
cess allowed us to discriminate between the two models after a
few iterations of the process the two model weights accumulated
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Fig. 4. Simulation of the optimal removal policies (dR TOT½ �
t ; a) obtained from an adapti

productivity (c). The initial weights for the two models were set at 0.5 (d). We conducted
effect of raccoons on Oystercatcher productivity (POYS

t , dashed lines); the second simula
toward the true model (Fig. 4d). If the true model was the one that
predicted no effect of raccoons on Oystercatcher productivity (solid
lines, Fig. 4a–d), then no raccoons were removed after the second
iteration. If the true model was the one that assumed a strong ef-
fect of raccoons on Oystercatchers (dashed lines, Fig. 4a–d), then
the average number of raccoons to be removed was 10 over a per-
iod of 40 years (Fig. 4a). Note that the rate of learning was faster
when the true model was the one that assumed a strong effect of
raccoons (Fig. 4d).

4. Discussion

4.1. Optimal control of raccoons

The SDM approach that we describe to address the optimal con-
trol of native predators can be used to satisfy several competing
objectives. In our case study, we were able to identify optimal pol-
icies that minimized the removal of raccoons while satisfying two
utility thresholds: maintaining Oystercatcher productivity above a
specified level deemed necessary for its recovery (Schulte, 2010),
and also maintaining raccoon abundance above a level acceptable
to Seashore managers. One major benefit of this approach is that
it is well suited for making decisions when facing large uncertain-
ties (e.g., Williams et al., 2002). With our specific example, we
showed how to address environmental stochasticity (Figs. 1, 2
and 4) and parameter uncertainty (see adaptive optimization,
Fig. 4). In order to illustrate some specific points more clearly we
then used deterministic analyses (Fig. 3 and Table 1).

Based on our stochastic analysis (i.e., with a model that in-
cluded some environmental stochasticity) we found that the opti-
mal control of raccoons would result in Oystercatcher
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productivity that remains significantly higher than the specified
utility threshold of 0.35 (Fig. 2 and Table 1). This result can be ex-
plained in the context of the theory of sustainable exploitation
(e.g., Runge et al., 2004, 2009). Indeed, the annual removal is sub-
stantially reduced at a lower raccoon abundance (Figs. 1 and 3).
Over the long term, the optimal strategy seeks to hold the raccoon
population on the left shoulder of the yield curve, at a population
size well below where sustainable take is maximized (Fig. 3).
Therefore, the optimal policy leads to removals that keep the rac-
coon population near the specified utility threshold (i.e., 25 fe-
males, Fig. 2), which also coincides with high Oystercatcher
productivity. Thus, in order to reduce the cumulative number of
raccoons that need to be removed over a period of 30 years, it is
preferable to initially remove a number of raccoons large enough
to bring the population close to the utility threshold. This number
may be large if the initial population is substantially higher than
the utility threshold. Yet, this strategy leads to a lower cumulative
removal of raccoons than a strategy that would remove fewer rac-
coons over a longer time period. For instance, if the maximum
number of raccoons that can be removed in any one year is 16,
the cumulative removal over 40 years led to considerably higher
removal (489 raccoons and 14 years to reach the desired value
of Oystercatcher productivity of 0.35) than if up to 50 raccoons
could be removed (391 raccoons and only 2 years; based on our
results from a deterministic model). In fact, if for practical reasons
(e.g., annual budgetary constraints) managers cannot commit to a
minimum number of raccoon removals annually (13 raccoons in
our example assuming a deterministic model), the removal pro-
gram would be unable to keep Oystercatcher productivity above
0.35. These results emphasize the value of applying SDM tools be-
fore implementing such controversial management actions. Ide-
ally, this process can help to identify decisions that are optimal
with respect to the management objectives. But it may also help
managers realize when they do not have the resources to meet
their intended objectives. If that were the case, managers may
need to consider different management actions, or revise their
objectives. This analysis also shows that if managers decide to
control the population of raccoons on SCB they would make a
commitment over a long time period to meet the current manage-
ment objectives. Otherwise, they may run the risk of creating an
ecological trap for Oystercatchers (Schlaepfer et al., 2002). For
example at a lower density of raccoons (due to control effort)
Oystercatchers from other breeding areas may be attracted to
SCB; however, if the control of raccoons stops abruptly the breed-
ing success of these ‘‘new” Oystercatchers may be drastically re-
duced because of a rapid increase in raccoon density (due to the
interruption of the control program).

The policies based on selective removal led primarily to the re-
moval of adults. The difference in the proportion of adults versus
yearlings removed increased if we assumed a greater difference
in reproductive value between yearlings and adults (Table 1). We
found that when the reproductive values differed greatly among
age classes, the selective removal was more efficient (i.e., fewer
animals could be removed while still meeting Oystercatcher pro-
ductivity and raccoon abundance objectives) than the non-selec-
tive removal. Thus, even though the difference in policies was
negligible given the particular parameter values in our system (Ta-
ble 1), selective removal should still be considered in the evalua-
tion process of other predator control programs, especially where
the reproductive values of the different age classes vary substan-
tially. For example, we found that when the difference in reproduc-
tive values was large, the selective removal approach lead to an
average of 5.45 raccoons removed per year compared to an average
of 6.98 raccoons under the non-selective removal. Over a period of
40 years this difference could lead to a cumulative difference of
approximately 60 raccoons.
4.2. Adaptive optimization

One additional benefit of the SDM approach to managing the
control of native predators is that it is well suited for the implemen-
tation of adaptive management. Adaptive management can be used
to reduce model uncertainty resulting in more effective manage-
ment in the future (e.g., Walters, 1986; Kendall, 2001; Williams
et al., 2002; Martin et al., 2009). For example, we considered two
competing models to assess the effect of raccoon abundance on nest
success of Oystercatchers. One model assumed a substantial effect
of raccoon abundance on nest success of Oystercatchers (this first
model was based on historical data, see Methods) whereas the sec-
ond model assumed no effect of raccoon abundance on Oyster-
catcher productivity (additional models could be considered if
warranted). By simulating the policies from the passive optimiza-
tion algorithm, we found that if equal weights were given to each
of the two models on the first iteration, and if the ‘‘true” model is
the ‘‘no effect model”, 50 raccoons would be removed in the first
iteration but no raccoons would be removed thereafter (Fig. 4a).
This is because the adaptive process allows for the identification
of the decision model that represents the best approximation of
reality (Fig. 4d). Even in the absence of learning, the implementa-
tion of a passive adaptive optimization algorithm is useful to ac-
count for the uncertainty associated with the parameters in the
model. For instance, if there are large uncertainties about the model
parameters, as was the case with the raccoon Oystercatcher prob-
lem, these uncertainties can be accounted for with a passive adap-
tive optimization algorithm (Fig. 4). Accounting for large parameter
uncertainty in decision-making is an important problem (e.g., Re-
gan et al., 2005), because, generally decision makers cannot afford
to postpone decisions until better estimates can be obtained (espe-
cially, because doing nothing is in fact a decision).
5. Conclusions

The decision analysis that we presented focused on two species:
Oystercatchers and raccoons. This analysis would be well suited if
Seashore managers were interested in controlling raccoons to spe-
cifically promote the recovery of Oystercatchers or if they believed
that Oystercatchers can be viewed as an indicator species (i.e., a
species whose protection would be a good predictor of the protec-
tion of other species of interest). This decision-making framework
can be expanded to include additional prey species based on the
needs of managers and the ecological functioning of the system.
For example, additional utility thresholds could be included for
sea turtles and the Piping Plover (Charadrius melodus), which are
other nesting species of concern along the southeast coast. Con-
cerns about the potential release of alternative predators such as
ghost crabs could be incorporated, by including models that as-
sume a negative effect of crabs on sea turtle nest success (Barton
and Roth, 2008). However, including additional species would con-
siderably increase the dimensionality of the problem and therefore
alternative optimization methods could be necessary (e.g., rein-
forcement learning; Fonnesbeck, 2005). Nevertheless simpler mod-
els provide initial insights and come at a lower cost. Thus, before
undertaking a full analysis of a large management issue, it may
be wise to focus on a key subset of the problem to ensure that
the objectives can be attained through the actions considered. In
our application we have shown that, based on our current knowl-
edge of the system, control of raccoons could promote the recovery
of Oystercatchers. We have also provided managers with a quanti-
tative assessment of the effort (in terms of trapping) that would be
necessary to reach the stated objectives (Figs. 1 and 2). Managers
can then decide if expanding the decision framework to more spe-
cies would be appropriate to meet their objectives.



1758 J. Martin et al. / Biological Conservation 143 (2010) 1751–1758
The SDM framework that we described provides several bene-
fits for dealing with the control of native predators in protected
areas. It provides a rigorous and transparent framework for
addressing controversial management issues. It is transparent in
the sense that decision makers must be explicit about their objec-
tives and rigorous due to a foundation in decision theory and mod-
els of system behavior that are based on the best scientific
information available and also account for uncertainty in that
information. (Williams et al., 2002; Martin et al., 2009). These char-
acteristics make the SDM process well suited for guiding decision-
making under the National Environmental Policy Act (NEPA)
(Thrower, 2006). Finally, the adaptive component of this approach
allows for the incorporation of new relevant information to im-
prove management decisions in the future (Williams et al., 2002).
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